定義在R上的非零函數(shù)f(x)對于任意實數(shù)m,n總有f(m+n)=f(m)•f(n),且當(dāng)x>0時,0<f(x )<1.
(1)試求f(0)的值;
(2)求證:f(x)的值恒為正;
(3)判斷f(x)的單調(diào)性并證明結(jié)論.
考點:抽象函數(shù)及其應(yīng)用,函數(shù)單調(diào)性的判斷與證明
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)令m=1,n=0,結(jié)合非零函數(shù)f(x)對于任意實數(shù)m,n總有f(m+n)=f(m)•f(n),可求出f(0),
(2)由(1)可得當(dāng)x>0時,0<f(x )<1,當(dāng)x=0時,f(0)=1,當(dāng)x<0時,-x>0,由f(x+(-x))=f(0)=f(x)•f(-x),可得f(x )>1,進而得到結(jié)論;
(3)當(dāng)x<0時,-x>0,則0<f(-x)<1⇒f(x)=
1
f(-x)
>0,故對任意x1>x2,
f(x1)
f(x2)
=f(x1-x2)<1,即f(x1)<f(x2),根據(jù)單調(diào)性的定義證明函數(shù)的單調(diào)性.
解答: 解:(1)∵f(m+n)=f(m)•f(n),
令m=1,n=0,則f(1)=f(1)f(0),
又∵當(dāng)x>0時,0<f(x )<1,
∴0<f(1)<1,
故f(0)=1,
證明:(2)當(dāng)x>0時,0<f(x )<1,
當(dāng)x=0時,f(0)=1,
當(dāng)x<0時,-x>0,
f(x+(-x))=f(0)=f(x)•f(-x),
故f(x )>1,
綜上所述:f(x)>0恒成立,
故f(x)的值恒為正;
(3)解:當(dāng)x<0時,-x>0,則0<f(-x)<1⇒f(x)=
1
f(-x)
>0,
即對任意x∈R都有f(x)>0,
對于任意x1>x2,
f(x1)
f(x2)
=f(x1-x2)<1⇒f(x1)<f(x2),
即f(x)在R上為減函數(shù).
點評:抽象函數(shù)求某點的函數(shù)值,通常采取賦值法解決;對于抽象函數(shù)的單調(diào)性,奇偶性的判定,一般采取定義解決,此題難度較大,綜合性強,屬難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={1,2},則滿足A∪B={1,2,3,4,5}的集合B的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,M={x|-3≤x<5},則∁uM=( �。�
A、{x|x<-3或x≥5}
B、{x|x≤-3或x>5}
C、{x|x<-3且x≥5}
D、{x|x≤-3且x>5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知O是三角形ABC所在平面內(nèi)一定點,動點P滿足
OP
=
OA
+λ(
AB
|
AB
|sinB
+
AC
|
AC
|sinC
)((λ≥0),則P點軌跡一定通過三角形ABC的( �。�
A、內(nèi)心B、外心C、垂心D、重心
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屾盯骞橀懠顒夋М闂佹悶鍔嶇换鍐Φ閸曨垰鍐€妞ゆ劦婢€缁墎绱撴担鎻掍壕婵犮垼娉涢鍕崲閸℃稒鐓忛柛顐g箖閸f椽鏌涢敐鍛础缂佽鲸甯¢幃鈺呮濞戞帗鐎伴梻浣告惈閻ジ宕伴弽顓犲祦闁硅揪绠戠粻娑㈡⒒閸喓鈯曟い鏂垮濮婄粯鎷呴崨濠傛殘婵烇絽娲﹀浠嬫晲閻愭潙绶為柟閭﹀劦閿曞倹鐓曢柡鍥ュ妼閻忕姵淇婇锝忚€块柡灞剧洴閳ワ箓骞嬪┑鍥╀壕缂傚倷绀侀鍛崲閹版澘鐓橀柟杈鹃檮閸婄兘鏌ょ喊鍗炲闁告柨鎲$换娑氣偓娑欋缚閻倕霉濠婂簼绨绘い鏇稻缁绘繂顫濋鐔割仧闂備胶绮灙閻忓繑鐟╁畷鎰版倷閻戞ǚ鎷洪柣搴℃贡婵敻濡撮崘鈺€绻嗛柣鎰綑濞搭喗顨ラ悙宸剱妞わ妇澧楅幆鏃堟晲閸ラ搴婇梻鍌欒兌缁垶宕濋敃鍌氱婵炲棙鎸哥粈澶愭煏閸繃顥撳ù婊勭矋閵囧嫰骞樼捄鐩掋垽鏌涘Ο铏规憼妞ゃ劊鍎甸幃娆撳箵閹烘挻顔勯梺鍓х帛閻楃娀寮诲☉妯锋闁告鍋為悘鍫熺箾鐎电ǹ顎岄柛娆忓暙椤繘鎼归崷顓狅紲濠殿喗顨呭Λ娆撴偩閸洘鈷戠紓浣癸供濞堟棃鏌ㄩ弴銊ら偗闁绘侗鍠涚粻娑樷槈濞嗘垵濮搁柣搴$畭閸庡崬螞瀹€鍕婵炲樊浜濋埛鎴︽煕濞戞﹫鍔熺紒鐘虫崌閹顫濋悡搴$睄闂佽桨绀佺粔鐟邦嚕椤曗偓瀹曟帒饪伴崪鍐簥闂傚倷绀侀幖顐ゆ偖椤愶箑纾块柟鎯板Г閸嬧晜绻涘顔荤凹闁绘挻绋戦湁闁挎繂鎳忛幉鎼佸极閸惊鏃堟偐闂堟稐绮跺┑鐐叉▕閸欏啴濡存笟鈧浠嬵敇閻愰潧骞愰梻浣告啞閸旀垿宕濆澶嬪€堕柛顐犲劜閸婄敻鎮峰▎蹇擃仾缂佲偓閸愨斂浜滈柕濞垮劵闊剚顨ラ悙璇ц含鐎殿喕绮欓、姗€鎮欓棃娑樼闂傚倷绀侀幉锟犲礉閹达箑绀夐幖娣妼绾惧綊鏌ㄩ悤鍌涘

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時,f(x)=-x2-2x+a,若?x∈[0,+∞),f(x)≥f(a)恒成立,則實數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知光線由點(-1,4)射出,遇到直線l1:2x+3y-6=0后被反射過點B的坐標(biāo)為(3,
62
13
),求反射光線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
1
x2-2x+2
的單調(diào)減區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四面體的體積為a,則其外接球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=f{(x,y)|2x-y=0},B=f{(x,y)|3x+y=0},C=f{(x,y)|2x-y=3},求A∩B,A∩C.

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌i幋锝呅撻柛銈呭閺屻倝宕妷锔芥瘎婵炲濮甸懝楣冨煘閹寸偛绠犻梺绋匡攻椤ㄥ棝骞堥妸褉鍋撻棃娑欏暈鐎规洖寮堕幈銊ヮ渻鐠囪弓澹曢梻浣虹帛娓氭宕板☉姘变笉婵炴垶菤濡插牊绻涢崱妯哄妞ゅ繒鍠栧缁樻媴閼恒儳銆婇梺闈╃秶缁犳捇鐛箛娑欐櫢闁跨噦鎷� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙绀冩い鏇嗗洤鐓橀柟杈鹃檮閸嬫劙鏌涘▎蹇fЧ闁诡喗鐟х槐鎾存媴閸濆嫷鈧矂鏌涢妸銉у煟鐎殿喖顭锋俊鎼佸煛閸屾矮绨介梻浣呵归張顒傜矙閹达富鏁傞柨鐕傛嫹