【題目】如圖,在四棱錐中,底面,底面為直角梯形,分別為的中點.
(1)求證:平面;
(2)若截面與底面所成銳二面角為,求的長度.
【答案】(1)證明見解析;(2).
【解析】
(1)取的中點,連接,通過中位線證得,且,又證得,從而可證明四邊形是平行四邊形,則,利用線面平行的判定定理可證得平面;
(2)分別以所在直線為軸、軸、軸建立空間直角坐標系,設(shè),利用空間向量法表示出截面與底面所成銳二面角的余弦值,建立方程,從而求出的長.
(1)證明:取的中點,連接,
是的中點,
,且.
∵底面為直角梯形,,
,
,
,且.
∴四邊形是平行四邊形,.
又平面平面,
平面.
(2)解:如圖,分別以所在直線為軸、軸、軸
建立空間直角坐標系,設(shè),
則
,
取平面的一個法向量為. ,
設(shè)平面的法向量為,
則有
即
不妨取,則,即, ,
解得,即的長為4.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在處切線的斜率為,判斷函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,函數(shù),則下列說法正確的是( )
A.若,則的圖象上存在唯一一對關(guān)于原點對稱的點
B.存在實數(shù)使得的圖象上存在兩對關(guān)于原點對稱的點
C.不存在實數(shù)使得的圖象上存在兩對關(guān)于軸對稱的點
D.若的圖象上存在關(guān)于軸對稱的點,則
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《周髀算經(jīng)》有這樣一個問題:從冬至日起,依次小寒、大寒、立春、雨水、驚蟄、春分、清明、谷雨、立夏、小滿、芒種十二個節(jié)氣日影長減等寸,雨水、驚蟄、春分、清明日影之和為三丈二尺,前七個節(jié)氣日影之和為七丈三尺五寸,問立夏日影長為( )
A.七尺五寸B.六尺五寸C.五尺五寸D.四尺五寸
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形中,,,,,,是上的點,,為的中點.將沿折起到的位置,使得,如圖2.
(1)求證:平面平面;
(2)點在線段上,當直線與平面所成角的正弦值為時,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在棱長為1的正方體中,P為線段上的動點,下列說法正確的是( )
A.對任意點P,平面
B.三棱錐的體積為
C.線段DP長度的最小值為
D.存在點P,使得DP與平面所成角的大小為
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】Keep是一款具有社交屬性的健身APP,致力于提供健身教學、跑步、騎行、交友及健身飲食指導、裝備購買等一站式運動解決方案.Keep可以讓你隨時隨地進行鍛煉,記錄你每天的訓練進程.不僅如此,它還可以根據(jù)不同人的體質(zhì),制定不同的健身計劃.小明根據(jù)Keep記錄的2019年1月至2019年11月期間每月跑步的里程(單位:十公里)數(shù)據(jù)整理并繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )
A.月跑步里程最小值出現(xiàn)在2月
B.月跑步里程逐月增加
C.月跑步里程的中位數(shù)為5月份對應的里程數(shù)
D.1月至5月的月跑步里程相對于6月至11月波動性更小
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐中,平面底面,是等邊三角形,底面是菱形,且,為棱的中點,為菱形的中心,下列結(jié)論正確的有( )
A.直線與平面平行B.直線與直線垂直
C.線段與線段長度相等D.與所成角的余弦值為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com