【題目】若一個(gè)三位數(shù)的個(gè)位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字,我們就稱這個(gè)三位數(shù)為“遞增三位數(shù)”.現(xiàn)從所有的遞增三位數(shù)中隨機(jī)抽取一個(gè),則其三個(gè)數(shù)字依次成等差數(shù)列的概率為__________.
【答案】;
【解析】
利用列舉法列舉出所有符合“遞增三位數(shù)”的三位數(shù),并找出符合等差數(shù)列的個(gè)數(shù),即可由古典概型概率的計(jì)算公式求解.
根據(jù)定義“遞增三位數(shù)”, 個(gè)位數(shù)字大于十位數(shù)字,十位數(shù)字大于百位數(shù)字.可知個(gè)位數(shù)最小為3,最大為9
當(dāng)個(gè)位數(shù)為3時(shí),三位數(shù)為,共1個(gè).三個(gè)數(shù)字依次成等差數(shù)列的有1個(gè).
當(dāng)個(gè)位數(shù)為4時(shí),三位數(shù)為,共3個(gè).三個(gè)數(shù)字依次成等差數(shù)列的為,有1個(gè)
當(dāng)個(gè)位數(shù)為5時(shí),三位數(shù)為,共6個(gè).三個(gè)數(shù)字成等差數(shù)列的為有2個(gè).
當(dāng)個(gè)位數(shù)為6時(shí),三位數(shù)為共10個(gè).三個(gè)數(shù)字成等差數(shù)列的為,有2個(gè).
當(dāng)個(gè)位數(shù)為7時(shí),三位數(shù)為共15個(gè),三個(gè)數(shù)字成等差數(shù)列的為,有3個(gè).
當(dāng)個(gè)位數(shù)為8時(shí),三位數(shù)為,.共21個(gè), 三個(gè)數(shù)字成等差數(shù)列的為,有3個(gè).
當(dāng)個(gè)位數(shù)為9時(shí),三位數(shù)為,,,,,,共個(gè), 三個(gè)數(shù)字成等差數(shù)列的為,有4個(gè).
綜上可知, “遞增三位數(shù)”共有個(gè).三個(gè)數(shù)字成等差數(shù)列的共有個(gè)
則從所有的遞增三位數(shù)中隨機(jī)抽取一個(gè),則其三個(gè)數(shù)字依次成等差數(shù)列的概率為
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問某地100名高中學(xué)生在選擇座位時(shí)是否挑同桌,得到如下列聯(lián)表:
男生 | 女生 | 合計(jì) | |
挑同桌 | 30 | 40 | 70 |
不挑同桌 | 20 | 10 | 30 |
總計(jì) | 50 | 50 | 100 |
(1)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個(gè)容量為5的樣本,現(xiàn)從這5名學(xué)生中隨機(jī)選取3名做深度采訪,求這3名學(xué)生中恰有2名挑同桌的概率;
(2)根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為“性別與在選擇座位時(shí)是否挑同桌”有關(guān)?
下面的臨界值表供參考:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)絡(luò)的發(fā)展,網(wǎng)上購(gòu)物越來越受到人們的喜愛,各大購(gòu)物網(wǎng)站為增加收入,促銷策略越來越多樣化,促銷費(fèi)用也不斷增加.下表是某購(gòu)物網(wǎng)站2018年1月~8月促銷費(fèi)用(萬元)和產(chǎn)品銷量(萬件)的具體數(shù)據(jù).
月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促銷費(fèi)用 | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
產(chǎn)品銷量 | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根據(jù)數(shù)據(jù)可知與具有線性相關(guān)關(guān)系,請(qǐng)建立與的回歸方程(系數(shù)精確到0.01);
(2)已知6月份該購(gòu)物網(wǎng)站為慶祝成立1周年,特制定獎(jiǎng)勵(lì)制度:以(單位:件)表示日銷量,,則每位員工每日獎(jiǎng)勵(lì)100元;,則每位員工每日獎(jiǎng)勵(lì)150元,,則每位員工每日獎(jiǎng)勵(lì)200元.現(xiàn)已知該網(wǎng)站6月份日銷量服從正態(tài)分布,請(qǐng)你計(jì)算某位員工當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)大約多少元(當(dāng)月獎(jiǎng)勵(lì)金額總數(shù)精確到百分位).
參考數(shù)據(jù):,,其中,分別為第個(gè)月的促銷費(fèi)用和產(chǎn)品銷量,.
參考公式:①對(duì)于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計(jì)分別為,;②若隨機(jī)變量服從正態(tài)分布,則,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為2,過點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)橢圓的右焦點(diǎn)為F,定點(diǎn),過點(diǎn)F且斜率不為零的直線l與橢圓交于A,B兩點(diǎn),以線段AP為直徑的圓與直線的另一個(gè)交點(diǎn)為Q,證明:直線BQ恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,平面,,為上異于的點(diǎn).
(1)求證:平面平面;
(2)當(dāng)與平面所成角為時(shí),求的長(zhǎng);
(3)當(dāng)時(shí),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗(yàn)960人的血樣進(jìn)行化驗(yàn),由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.
方案①:將每個(gè)人的血分別化驗(yàn),這時(shí)需要驗(yàn)960次.
方案②:按個(gè)人一組進(jìn)行隨機(jī)分組,把從每組個(gè)人抽來的血混合在一起進(jìn)行檢驗(yàn),如果每個(gè)人的血均為陰性,則驗(yàn)出的結(jié)果呈陰性,這個(gè)人的血就只需檢驗(yàn)一次(這時(shí)認(rèn)為每個(gè)人的血化驗(yàn)一次);否則,若呈陽(yáng)性,則需對(duì)這個(gè)人的血樣再分別進(jìn)行一次化驗(yàn).這樣,該組個(gè)人的血總共需要化驗(yàn)次.
假設(shè)此次普查中每個(gè)人的血樣化驗(yàn)呈陽(yáng)性的概率為,且這些人之間的試驗(yàn)反應(yīng)相互獨(dú)立.
(1)設(shè)方案②中,某組個(gè)人中每個(gè)人的血化驗(yàn)次數(shù)為,求的分布列;
(2)設(shè).試比較方案②中,分別取2,3,4時(shí),各需化驗(yàn)的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗(yàn)次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率,且圓過橢圓的上,下頂點(diǎn).
(1)求橢圓的方程.
(2)若直線的斜率為,且直線交橢圓于、兩點(diǎn),點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為,點(diǎn)是橢圓上一點(diǎn),判斷直線與的斜率之和是否為定值,如果是,請(qǐng)求出此定值:如果不是,請(qǐng)說明理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列是公差不為零等差數(shù)列,滿足;數(shù)列的前項(xiàng)和為,且滿足.
(1)求數(shù)列、的通項(xiàng)公式;
(2)在和之間插入1個(gè)數(shù),使成等差數(shù)列;在和之間插入2個(gè)數(shù),使成等差數(shù)列;……;在和之間插入個(gè)數(shù),使成等差數(shù)列,
(i)求;
(ii)是否存在正整數(shù),使成立?若存在,求出所有的正整數(shù)對(duì);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com