設(shè)a∈{-3,-2,-1,-
1
2
,
1
3
1
2
,1,2,3}
,則使y=xa為奇函數(shù)且在(0,+∞)上單調(diào)遞減的a值的個(gè)數(shù)為(  )
分析:由冪函數(shù)在(0,+∞)的單調(diào)性縮小a的范圍,再由冪函數(shù)的奇偶性即可確定a的值
解答:解:∵y=xa在(0,+∞)上單調(diào)遞減
∴a<0
∴a的可能取值為-3,-2,-1,-
1
2

又∵y=xa為奇函數(shù)
當(dāng)a=-2時(shí),y=x-2=
1
x2
是偶函數(shù);
當(dāng)a=-
1
2
時(shí),y=x-
1
2
=
1
x
是非奇非偶函數(shù)不合題意
∴a=-3或a=-1
∴滿足題意的a的值有2個(gè)
故選B
點(diǎn)評(píng):本題考查冪函數(shù)的性質(zhì),要注意冪函數(shù)的指數(shù)a與第一象限內(nèi)的圖象的單調(diào)性之間的關(guān)系,a<0是單調(diào)遞減,a>0時(shí)單調(diào)遞增;同時(shí)要求會(huì)判斷冪函數(shù)的奇偶性.屬簡(jiǎn)單題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:黃岡中學(xué) 高二數(shù)學(xué)(下冊(cè))、考試卷11 期末測(cè)試卷(A) 題型:013

在直角坐標(biāo)系中,設(shè)A(3,2),B(-2,-3),沿y軸把直角坐標(biāo)平面折成120°的二面角后,AB的長(zhǎng)為

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:數(shù)學(xué)教研室 題型:022

設(shè)a=(3,-2),b=(25),c=(4,-3),則a×b+c×b=________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

在直角坐標(biāo)系中,設(shè)A(32),B(2,-3),沿y軸把坐標(biāo)平面折成120°的二面角后,AB的長(zhǎng)為

[  ]

A

B

C

D

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)a∈{-3,-2,-1,-
1
2
,
1
3
1
2
,1,2,3}
,則使y=xa為奇函數(shù)且在(0,+∞)上單調(diào)遞減的a值的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案