求圓心在直線l:y=x-4上,并且過圓C1:x2+y2-4x=0和圓C2:x2+y2-4y=0的交點的圓的方程.
【答案】分析:先解方程組求得兩圓的交點坐標(biāo),寫出公共弦的中垂線方程,將中垂線方程和圓心所在的直線l的方程
聯(lián)立方程組,求出圓心坐標(biāo),求出半徑,寫出圓的方程.
解答:解:設(shè)圓C1:x2+y2-4x=0和C2:x2+y2-4y=0的相交于點A,B.
解方程組,得 ,或
∴A(0,0),B(2,2)
∴直線AB的垂直平分線的方程是y=-x+2
由方程組,解得,∴所求圓心C的坐標(biāo)是C(3,-1).

∴所求圓的方程為(x-3)2+(y+1)2=10
點評:本題考查求兩圓的交點坐標(biāo)的方法,求兩直線的交點坐標(biāo)的方法,以及求圓的標(biāo)準(zhǔn)方程的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求圓心在直線l:y=x-4上,并且過圓C1:x2+y2-4x=0和圓C2:x2+y2-4y=0的交點的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求半徑為2,圓心在直線L:y=2x上,且被直線l:x-y-1=0所截弦的長為2
2
的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知半徑為5的動圓C的圓心在直線l:x-y+10=0上.

(1)若動圓C過點(-5,0),求圓C的方程;

(2)是否存在正實數(shù)r,使得動圓C中滿足與圓O:x2+y2=r2相外切的圓有且僅有一個,若存在,請求出來;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓Ax2y2+2x+2y-2=0,若圓B平分圓A的周長,且圓B的圓心在直線ly=2x上,求滿足上述條件的半徑最小的圓B的方程.

查看答案和解析>>

同步練習(xí)冊答案