精英家教網 > 高中數學 > 題目詳情
精英家教網某旅游景區(qū)的觀景臺P位于高(山頂到山腳水平面M的垂直高度PO)為2Km的山峰上,山腳下有一段位于水平線上筆直的公路AB,山坡面可近似地看作平面PAB,且△PAB為等腰三角形.山坡面與腳所在水平面M所成的二面角為α(0°<α<90°),且sinα=
2
5
.現從山腳的公路AB某處C0開始修建與公路AB成β角的盤山公路C0C1,C1C2,C2C3,…Cn-1Cn(如圖所示).其中0<β<90°,sinβ=
1
4

(1)試問:垂直高度每升高100米,盤山公路需修建多長?若修建盤山公路至半山腰(高度為山高的一半),在半山腰的中心Q處修建上山纜車索道站,索道PQ依山而建(與山坡面平行,離坡面高度忽略不計),問盤山公路的長度和索道的長度各是多少?
(2)若修建盤山公路為xKm,其造價為
x2+100
 a
萬元.而修建索道的造價為2
2
a元/Km.
問修建盤山公路至多高時,再修建上山索道至觀景臺,總造價最少.
分析:(1)在盤山公路上取一個點,作出該點到平面的垂線,再利用三垂線定理作出二面角棱的垂線,連接兩個垂足,最后結合直角三角形內三角函數的定義可求出索道長與山高的倍數關系,得出結論;
(2)設盤山公路修至山高的距離為x,在(1)的條件下,結合勾股定理建立關于x的函數,最后利用導數的符號得出此函數是先減后增的函數,極小值即為函數的最小值,從而得出最少總價對應的x.
解答:精英家教網解(1)在盤山公路C0C1上任選一點D,作DE⊥平面M交平面M于E,過E作EF⊥AB交AB于F,
連接DF,易知DF⊥C0F.sin∠DFE=
2
5
,sin∠DC0F=
1
4

∵DF=
1
4
C0D,DE=
2
5
DF,∴DE=
1
10
C0D
所以盤山公路長度是山高的10倍,索道長是山高的
5
2
倍.所以垂直高度每升高100米,盤山公路需修建1000米.
從山腳至半山腰,盤山公路為10Km.從半山腰至山頂,索道長2.5Km.(6分)
(2)設盤山公路修至山高x(0<x<2)Km,則盤山公路長為10x,索道長
5
2
(2-x)

設總造價為y萬元,則y=
(10x)2+100
 a+
5
2
(2-x)•2
2
a

=(10
x2+1
-5
2
x
)a+10
2
a

令y′=
10x
x2+1
-5
2
=0,則x=1

當x∈(0,1)時y′<0,函數y單調遞減
當x∈(1、2)時,y′>0,函數y單調遞增
∴x=1,y有最小值,即修建盤山公路′至山高1Km時,總造價最。13分)
點評:第一小問利用三垂線定理作輔助線,解決立體幾何中與二面角有關的問題,是立幾中常見的思路;第二小問處理帶根號式子的函數,用導數研究單調性,不失為一個很好的工具.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2012•藍山縣模擬)某旅游景區(qū)的觀景臺P位于高(山頂到山腳水平面M的垂直高度PO)為2km的山峰上,山腳下有一段位于水平線上筆直的公路AB,山坡面可近似地看作平面PAB,且△PAB為等腰三角形.山坡面與山腳所在水平面M所成的二面角為α(0°<α<90°),且sinα=
2
5
.現從山腳的水平公路AB某處C0開始修建一條盤山公路,該公路的第一段、第二段、第三段…,第n-1段依次為
C0C1,C1C2,C2C3,…,Cn-1Cn(如圖所示),且C0C1,C1C2,C2C3,…,Cn-1Cn與AB所成的角均為β,其中0<β<90°,sinβ=
1
4
.試問:
(1)每修建盤山公路多少米,垂直高度就能升高100米.若修建盤山公路至半山腰(高度為山高的一半),在半山腰的中心Q處修建上山纜車索道站,索道PQ依山而建(與山坡面平行,離坡面高度忽略不計),問盤山公路的長度和索道的長度各是多少?
(2)若修建xkm盤山公路,其造價為
x2+100
 a萬元.修建索道的造價為2
2
a萬元/km.問修建盤山公路至多高時,再修建上山索道至觀景臺,總造價最少.

查看答案和解析>>

科目:高中數學 來源:2010-2011學年湖南省長沙市高三第六次月考理科數學卷 題型:解答題

(本小題滿分13分)

 

某旅游景區(qū)的觀景臺P位于高(山頂到山腳水平面M的垂直高度PO)為2km的山峰上,山腳下有一段位于水平線上筆直的公路AB,山坡面可近似地看作平面PAB,且△PAB為等腰三角形.山坡面與山腳所在水平面M所成的二面角為α(0°<α<90°),且sinα=.現從山腳的水平公路AB某處C0開始修建一條盤山公路,該公路的第一段、第二段、第三段…,第n-1段依次為C0C1,C1C2,C2C3,…,Cn-1Cn(如圖所示),且C0C1,C1C2,C2C3,…,Cn-1Cn與AB所成的角均為β,其中0<β<90°,sinβ=.試問:

(1)每修建盤山公路多少米,垂直高度就能升高100米.若修建盤山公路至半山腰(高度為山高的一半),在半山腰的中心Q處修建上山纜車索道站,索道PQ依山而建(與山坡面平行,離坡面高度忽略不計),問盤山公路的長度和索道的長度各是多少?

(2)若修建xkm盤山公路,其造價為 a萬元.修建索道的造價為2a萬元/km.問修建盤山公路至多高時,再修建上山索道至觀景臺,總造價最少.

 

查看答案和解析>>

科目:高中數學 來源:2009-2010學年湖南省長沙一中高三(下)第六次月考數學試卷(理科)(解析版) 題型:解答題

某旅游景區(qū)的觀景臺P位于高(山頂到山腳水平面M的垂直高度PO)為2Km的山峰上,山腳下有一段位于水平線上筆直的公路AB,山坡面可近似地看作平面PAB,且△PAB為等腰三角形.山坡面與腳所在水平面M所成的二面角為α(0°<α<90°),且sinα=.現從山腳的公路AB某處C開始修建與公路AB成β角的盤山公路CC1,C1C2,C2C3,…Cn-1Cn(如圖所示).其中0<β<90°,sinβ=
(1)試問:垂直高度每升高100米,盤山公路需修建多長?若修建盤山公路至半山腰(高度為山高的一半),在半山腰的中心Q處修建上山纜車索道站,索道PQ依山而建(與山坡面平行,離坡面高度忽略不計),問盤山公路的長度和索道的長度各是多少?
(2)若修建盤山公路為xKm,其造價為萬元.而修建索道的造價為2a元/Km.
問修建盤山公路至多高時,再修建上山索道至觀景臺,總造價最少.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年湖南省永州市藍山二中高三第六次聯考數學試卷(理科)(解析版) 題型:解答題

某旅游景區(qū)的觀景臺P位于高(山頂到山腳水平面M的垂直高度PO)為2km的山峰上,山腳下有一段位于水平線上筆直的公路AB,山坡面可近似地看作平面PAB,且△PAB為等腰三角形.山坡面與山腳所在水平面M所成的二面角為α(0°<α<90°),且sinα=.現從山腳的水平公路AB某處C開始修建一條盤山公路,該公路的第一段、第二段、第三段…,第n-1段依次為
CC1,C1C2,C2C3,…,Cn-1Cn(如圖所示),且CC1,C1C2,C2C3,…,Cn-1Cn與AB所成的角均為β,其中0<β<90°,sinβ=.試問:
(1)每修建盤山公路多少米,垂直高度就能升高100米.若修建盤山公路至半山腰(高度為山高的一半),在半山腰的中心Q處修建上山纜車索道站,索道PQ依山而建(與山坡面平行,離坡面高度忽略不計),問盤山公路的長度和索道的長度各是多少?
(2)若修建xkm盤山公路,其造價為 a萬元.修建索道的造價為2a萬元/km.問修建盤山公路至多高時,再修建上山索道至觀景臺,總造價最少.

查看答案和解析>>

同步練習冊答案