【題目】某賓館有相同標準的床位100張,根據經驗,當該賓館的床價(即每張床位每天的租金)不超過10元時,床位可以全部租出;當床位高于10元時,每提高1元,將有3張床位空閑. 為了獲得較好的效益,該賓館要給床位定一個合適的價格,條件是:①要方便結帳,床價應為1元的整數倍;②該賓館每日的費用支出為575元,床位出租的收入必須高于支出,而且高得越多越好.若用x表示床價,用y表示該賓館一天出租床位的凈收入(即除去每日的費用支出后的收入):
(1)把y表示成x的函數;
(2)試確定,該賓館將床價定為多少元時,既符合上面的兩個條件,又能使凈收入高?
【答案】
(1)解:
(2)解:當6≤x≤10且x∈N*時,y=100x﹣575,
所以當x=10時,ymax=425;
當11≤x≤38且x∈N*時,y=﹣3x2+130x﹣575=﹣3(x﹣65/3)2+2500/3,
所以當x=22時,ymax=833;
綜上,當x=22時,ymax=833.
答:該賓館將床價定為22元時,凈收入最高為833元
【解析】(1)當床價不超過10元時,床位全部租出,該賓館一天出租床位的凈收入為100x﹣575,由于床位出租的收入必須高于支出且x為整數,得到6≤x≤10且x∈N+;當床價超過10元時,該賓館一天出租床位的凈收入為[100﹣3(x﹣10)]x﹣575,化簡可得,此時的11≤x≤38;(2)分兩段求函數的最大值,當6≤x≤10,當x=10時,ymax=425;當11≤x≤38且x∈N*時,根據二次函數求最大值的方法求出即可,然后判斷去最大.
科目:高中數學 來源: 題型:
【題目】已知函數 ( 為實常數).
(Ⅰ)若 ,作函數 的圖像;
(Ⅱ)設在區(qū)間[1,2]上的最小值為 ,求的表達式;
(Ⅲ)設 ,若函數在區(qū)間[1,2]上是增函數,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】蘭州一中在世界讀書日期間開展了“書香校園”系列讀書教育活動。為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調查。下面是根據調查結果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學生稱為“讀書迷”,低于60分鐘的學生稱為“非讀書迷”。
非讀書迷 | 讀書迷 | 合計 | |
男 | 15 | ||
女 | 45 |
(1)根據已知條件完成下面2×2列聯表,并據此判斷是否有99%的把握認為“讀書迷”與性別有關?
(2)利用分層抽樣從這100名學生的“讀書迷”中抽取8名進行集訓,從中選派2名參加蘭州市讀書知識比賽,求至少有一名男生參加比賽的概率。
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知二次函數f(x)的最小值為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間[2a,a+1]上不單調,求實數a的取值范圍;
(3)在區(qū)間[﹣1,1]上,y=f(x)的圖象恒在y=2x+2m+1的圖象上方,試確定實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ax2-lnx。
(Ⅰ)當a=時,判斷f(x)的單調性;(Ⅱ)設f(x)≤x3+4x-lnx,在定義域內恒成立,求a的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以 下工人200名.為研究工人的日平均生產量是否與年齡有關.現采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計了他們某月的日平均生產件數,然后按工人年齡在“ 25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產件數分成5組: , , , , 分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
附表:
P( ) | 0.100 | 0 .010 | 0.001 |
k | 2.706 | 6.635 | 10.828 |
,(其中 )
(1)從樣本中日平均生產件數不足60件的工人中隨機抽取2人,求至少抽到一名“25周歲以下組”工人的頻率.
(2)規(guī)定日平均生產件數不少于80件者為“生產能手”,請你根據已知條件完成 的列聯表,并判斷是否有 的把握認為“生產能手與工人所在的年齡組有關”?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com