直線到兩點A(1,0),B(3,2)的距離都等于1,求此直線方程.

答案:
解析:

正解: x-y+ =0或 x-y±2- =0

正解:x-y+=0或x-y±2-=0


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

平面內(nèi)到定點(1,0)和到定點(4,0)的距離的比為
1
2
的點的軌跡為曲線M,直線l與曲線M相交于A,B兩點,若在曲線M上存在點C,使
OC
=
OA
+
OB
a
,且
a
=(-1,2)
,求直線l的斜率及對應(yīng)的點C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•奉賢區(qū)二模)給出下列3個命題:
①在平面內(nèi),若動點M到F1(-1,0)、F2(1,0)兩點的距離之和等于2,則動點M的軌跡是以F1,F(xiàn)2為焦點的橢圓;
②在平面內(nèi),已知F1(-5,0),F(xiàn)2(5,0),若動點M滿足條件:|MF1|-|MF2|=8,則動點M的軌跡方程是
x2
16
-
y2
9
=1
;
③在平面內(nèi),若動點M到點P(1,0)和到直線x-y-2=0的距離相等,則動點M的軌跡是拋物線.
上述三個命題中,正確的有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

兩點A(10),B(3,2)到直線l的距離均等于1,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年重點中學(xué)聯(lián)考一理) 以下四個關(guān)于圓錐曲線的命題中:

①平面內(nèi)到定點A(1,0)和定直線l:x=2的距離之比為的點的軌跡方程是:

②點P是拋物線y2=2x上的動點,點Py軸上的射影是M,點A的坐標(biāo)是A(3,6),則

  |PA|+|PM|的最小值是6;

③平面內(nèi)到兩定點距離之比等于常數(shù)λ(λ>0)的點的軌跡是圓;

④若過點C(1,1)的直線l交橢圓于不同的兩點A、B,且CAB的中點,則直線l的方程是3x+4y-7=0:

  其中真命題的序號是           (寫出所有真命題的序號)

查看答案和解析>>

同步練習(xí)冊答案