設(shè)計(jì)一個(gè)求
1
1+22
+
1
2+32
+
1
3+42
1
99+1002
的值的程序框圖.
考點(diǎn):設(shè)計(jì)程序框圖解決實(shí)際問(wèn)題
專(zhuān)題:算法和程序框圖
分析:由已知中,程序的功能我們可以利用循環(huán)結(jié)構(gòu)來(lái)解答本題,因?yàn)檫@是一個(gè)累加問(wèn)題,故循環(huán)前累加器S=0,由于已知中的式子,可得循環(huán)變量k初值為1,步長(zhǎng)為1,終值為99,累加量為
1
k+(k+1)2
,由此易寫(xiě)出算法步驟,并畫(huà)出程序框.
解答: 解:滿(mǎn)足條件的程序框圖如下:
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是程序框圖解決實(shí)際問(wèn)題,其中利用循環(huán)解答累加問(wèn)題時(shí),關(guān)鍵是根據(jù)已知中的程序確定循環(huán)變量的初值、步長(zhǎng)、終值,及累加量的通項(xiàng)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|x2-4x-5|,g(x)=k(x-7)
(1)畫(huà)出f(x)的簡(jiǎn)圖;
(2)若方程f(x)=g(x)有三個(gè)不等實(shí)根,求k值的集合;
(3)如果x∈[-1,5]時(shí),函數(shù)f(x)的圖象總在直線(xiàn)y=k(x-7)的下方,試求出k值的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax2+bx+c(a≠0)滿(mǎn)足f(0)=-4,f(x+1)為偶函數(shù),且x=-2是函數(shù)f(x)-4的一個(gè)零點(diǎn).又g(x)=mx+4(m>0).
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若關(guān)于x的方程f(x)=g(x)在x∈(1,5)上有解,求實(shí)數(shù)m的取值范圍;
(Ⅲ)令h(x)=f(x)-|g(x)|,求h(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把函數(shù)f(x)=2sin(2x+φ)(0<φ<π)的圖象向左平移
π
6
個(gè)單位后得到偶函數(shù)g(x)的圖象.
(Ⅰ)求φ的值;  
(Ⅱ)求函數(shù)h(x)=f(x-
π
12
)-g2(x)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(
3
,2),
b
=(sin2ωx,-cos2ωx),(ω>0).
(Ⅰ)若f(x)=
a
b
,且f(x)的最小正周期為π,求f(x)的最大值,并求f(x)取得最大值時(shí)x的集合;
(Ⅱ)在(1)的條件下,求函數(shù)f(x)的單調(diào)減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知函數(shù)g(x)=x2+2x+alnx在區(qū)間(0,1)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.
(2)已知函數(shù)f(x)=ln(ax+1)+
1-x
1+x
(x≥0,a>0)
,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=cos(
π
ω
x-φ
)(ω>0,0≤φ<2π)的圖象關(guān)于y軸對(duì)稱(chēng).
(1)求φ的值;
(2)若函數(shù)f(x)在(0,3)上單調(diào)遞減,試求當(dāng)ω取最小值時(shí),f(1)+f(2)+…+f(2014)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線(xiàn)y=k(x+1)(k>0)與拋物線(xiàn)y2=4x相交于A,B兩點(diǎn),且A,B兩點(diǎn)在拋物線(xiàn)的準(zhǔn)線(xiàn)上的射影分別是M,N,若|BN|=2|AM|,則k的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=-
4
5
,且π<α<
2
,則cos
α
2
等于
 

查看答案和解析>>

同步練習(xí)冊(cè)答案