【題目】波羅尼斯(古希臘數(shù)學(xué)家,約公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學(xué)成果,它將圓錐曲線的性質(zhì)網(wǎng)羅殆盡幾乎使后人沒有插足的余地.他證明過這樣一個(gè)命題:平面內(nèi)與兩定點(diǎn)距離的比為常數(shù)k)的點(diǎn)的軌跡是圓,后人將這個(gè)圓稱為阿波羅尼斯圓.現(xiàn)有,則當(dāng)的面積最大時(shí),AC邊上的高為_______________.

【答案】

【解析】

,,.根據(jù)阿波羅尼斯圓可得:點(diǎn)B的軌跡為圓, 以線段AC中點(diǎn)為原點(diǎn),AC所在直線為x軸建立直角坐標(biāo)系,求出B的軌跡方程,進(jìn)而得出結(jié)論.

解:為非零常數(shù),

根據(jù)阿波羅尼斯圓可得:點(diǎn)B的軌跡是圓.

以線段AC中點(diǎn)為原點(diǎn),AC所在直線為x軸建立直角坐標(biāo)系

,設(shè),∵

,整理得

因此,當(dāng)面積最大時(shí),BC邊上的高為圓的半徑.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為t為參數(shù)),曲線C2的參數(shù)方程為α為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn).x軸正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標(biāo)方程;

(Ⅱ)射線與曲線C2交于O,P兩點(diǎn),射線與曲線C1交于點(diǎn)Q,若△OPQ的面積為1,求|OP|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右頂點(diǎn)分別是雙曲線的左、右焦點(diǎn),且相交于點(diǎn)().

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)直線與橢圓交于A,B兩點(diǎn),以線段AB為直徑的圓是否恒過定點(diǎn)?若恒過定點(diǎn),求出該定點(diǎn);若不恒過定點(diǎn),請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)若函數(shù)有極大值M,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2021年某省將實(shí)行的新高考模式,即語文、數(shù)學(xué)、英語三科必選,物理、歷史二選一,化學(xué)、生物、政治、地理四選二,若甲同學(xué)選科沒有偏好,且不受其他因素影響,則甲同學(xué)同時(shí)選擇歷史和化學(xué)的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前n項(xiàng)和為,已知,且,對(duì)一切都成立.

1)當(dāng)時(shí),證明數(shù)列是常數(shù)列,并求數(shù)列的通項(xiàng)公式;

2)是否存在實(shí)數(shù),使數(shù)列是等差數(shù)列?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某花店每天以每枝5元的價(jià)格從農(nóng)場購進(jìn)若干枝玫瑰花,然后以每枝10元的價(jià)格出售.如果當(dāng)天賣不完,剩下的玫瑰花做垃圾處理.

)若花店一天購進(jìn)17枝玫瑰花,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:枝,n∈N)的函數(shù)解析式.

)花店記錄了100天玫瑰花的日需求量(單位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

頻數(shù)

10

20

16

16

15

13

10

(i)假設(shè)花店在這100天內(nèi)每天購進(jìn)17枝玫瑰花,求這100天的日利潤(單位:元)的平均數(shù);

(ii)若花店一天購進(jìn)17枝玫瑰花,以100天記錄的各需求量的頻率作為各需求量發(fā)生的概率,求當(dāng)天的利潤不少于75元的概率.

(命題意圖)本題主要考查給出樣本頻數(shù)分別表求樣本的均值、將頻率做概率求互斥事件的和概率,是簡單題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系,.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,點(diǎn)上的動(dòng)點(diǎn),的中點(diǎn).

1)請(qǐng)求出點(diǎn)軌跡的直角坐標(biāo)方程;

2)設(shè)點(diǎn)的極坐標(biāo)為若直線經(jīng)過點(diǎn)且與曲線交于點(diǎn),弦的中點(diǎn)為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)fx)=x22x+1的圖象與函數(shù)gx)=3cosπx的圖象所有交點(diǎn)的橫坐標(biāo)之和等于(

A.2B.4C.6D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案