【題目】下面是李強同學(xué)數(shù)學(xué)作業(yè)本上的一道題,請你幫他完成下面的題目.
(題目)求函數(shù)f(x)=,x∈R,在x=0,1,2處的函數(shù)值和值域
(解答)(一)計算f(0)、f(1)、f(2).
(二)總結(jié):容易看出,這個函數(shù)當x=0時,有最大值__________,當自變量x的絕對值逐漸__________(選填“變大”或“變小”)時,函數(shù)值逐漸變小并趨向于0,但__________(選填“永遠不會”或“可能會”)等于0,于是可知該函數(shù)的值域為集合:
{y|y=f(x),__________}=____________.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 + =1(a>b>0)的離心率為 ,過橢圓上一點M作直線MA,MB交橢圓于A,B兩點,且斜率分別為k1 , k2 , 若點A,B關(guān)于原點對稱,則k1k2的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C: + =1,直線l: (t為參數(shù))
(1)寫出曲線C的參數(shù)方程,直線l的普通方程.
(2)過曲線C上任意一點P作與l夾角為30°的直線,交l于點A,求|PA|的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為增強市民的環(huán)境保護意識,面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取100名按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場的宣傳活動,應(yīng)從第3,4,5組各抽取多少名志愿者?
(2)在(1)的條件下,該市決定在第3,4組的志愿者中隨機抽取2名志愿者介紹宣傳經(jīng)驗,求第4組至少有一名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有下列四個命題:
①“若, 則互為相反數(shù)”的逆命題;
②“若兩個三角形全等,則兩個三角形的面積相等”的否命題;
③“若,則有實根”的逆否命題;
④“若不是等邊三角形,則的三個內(nèi)角相等”逆命題;
其中真命題為( ).
A. ①② B. ②③ C. ①③ D. ③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某校甲、乙、丙三個年級的學(xué)生志愿者人數(shù)分別為240,160,160.現(xiàn)采用分層抽樣的方法從中抽取7名同學(xué)去某敬老院參加獻愛心活動.
(Ⅰ)應(yīng)從甲、乙、丙三個年級的學(xué)生志愿者中分別抽取多少人?
(Ⅱ)設(shè)抽出的7名同學(xué)分別用A,B,C,D,E,F,G表示,現(xiàn)從中隨機抽取2名同學(xué)承擔敬老院的衛(wèi)生工作.
(i)試用所給字母列舉出所有可能的抽取結(jié)果;
(ii)設(shè)M為事件“抽取的2名同學(xué)來自同一年級”,求事件M發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是函數(shù) (),且)的圖象上一點,等比數(shù)列的前項和為,數(shù)列 ()的首項為,且前項和滿足: ().
(1).求數(shù)列和的通項公式;
(2).若數(shù)列的通項求數(shù)列的前項和;
(3).若數(shù)列前項和為,試問的最小正整數(shù)是多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知在平面直角坐標系中,圓的參數(shù)方程為 (為參數(shù))以軸為極軸, 為極點建立極坐標系,在該極坐標系下,圓是以點為圓心,且過點的圓心.
(1)求圓及圓在平而直角坐標系下的直角坐標方程;
(2)求圓上任一點與圓上任一點之間距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩運動員進行射擊訓(xùn)練.已知他們擊中的環(huán)數(shù)都穩(wěn)定在,,環(huán),且每次射擊擊中與否互不影響.甲、乙射擊命中環(huán)數(shù)的概率如下表:
()若甲、乙兩運動員各射擊次,求甲運動員擊中環(huán)且乙運動員擊中環(huán)的概率.
()若甲射擊次,用表示這次射擊擊中環(huán)以上(含環(huán))的次數(shù),求隨機變量的分布列及期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com