【題目】光伏發(fā)電是利用太陽(yáng)能電池及相關(guān)設(shè)備將太陽(yáng)光能直接轉(zhuǎn)化為電能,近幾年在國(guó)內(nèi)出臺(tái)的光伏發(fā)電補(bǔ)貼政策的引導(dǎo)下,某地光伏發(fā)電裝機(jī)量急劇上漲,如下表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

6

7

8

新增光伏裝機(jī)量兆瓦

0.4

0.8

1.6

3.1

6.1

7.1

9.7

12.2

某位同學(xué)分別用兩種模型:①,進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,殘差圖如下(注:殘差等于

經(jīng)過(guò)計(jì)算得,,,,其中,.

1)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)該選擇哪個(gè)模型?并簡(jiǎn)要說(shuō)明理由.

2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù)建立關(guān)于的回歸方程,并預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量是多少.(在計(jì)算回歸系數(shù)時(shí)精確到0.01

附:歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為:,.

【答案】1)選擇模型①,詳見(jiàn)解析(2;預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量為(兆瓦)

【解析】

1)根據(jù)殘差圖分析,看模型的估計(jì)值和真實(shí)值之間的接近程度,越接近效果相對(duì)較好.

2)由(1)可知,關(guān)于的回歸方程為,令,轉(zhuǎn)化為線(xiàn)性回歸分析,則回歸直線(xiàn)方程為.,根據(jù)提供的數(shù)據(jù)和公式求解直線(xiàn)方程,得到直線(xiàn)方程后,將2020提的年份代碼代入即可得到預(yù)測(cè)值.

1)選擇模型①.

理由如下:根據(jù)殘差圖可以看出,模型①的估計(jì)值和真實(shí)值比較相近,模型②的殘差值相對(duì)較大一些,所以模型①的擬合效果相對(duì)較好.

2)由(1)可知,關(guān)于的回歸方程為

,則.

由所給數(shù)據(jù)可得.

,

,

所以關(guān)于的回歸方程為

預(yù)測(cè)該地區(qū)2020年新增光伏裝機(jī)量為(兆瓦).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)的甲、乙、丙三名同學(xué)參加高校自主招生考試,每位同學(xué)彼此獨(dú)立的從四所高校中選2所.

(1)求甲、乙、丙三名同學(xué)都選高校的概率;

(2)若甲必選,記為甲、乙、丙三名同學(xué)中選校的人數(shù),求隨機(jī)變量的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直三棱柱中,平面,DAC的中點(diǎn).

1)求證:平面;

2)求證:平面;

3)設(shè)E上一點(diǎn),試確定E的位置使平面平面BDE,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)有多個(gè)地方盛產(chǎn)板栗,但板栗的銷(xiāo)售受季節(jié)的影響,儲(chǔ)存時(shí)間不能太長(zhǎng).某校數(shù)學(xué)興趣小組對(duì)近幾年某食品銷(xiāo)售公司的板栗銷(xiāo)售量y(噸)和板栗的銷(xiāo)售單價(jià)x(元/千克)之間的關(guān)系進(jìn)行了調(diào)查,得到下表數(shù)據(jù):

銷(xiāo)售單價(jià)x(元/千克)

11

10.5

10

9.5

9

8

銷(xiāo)售量y(噸)

5

6

8

10

11

14.1

1)根據(jù)前5組數(shù)據(jù),求出y關(guān)于x的線(xiàn)性回歸方程;

2)若線(xiàn)性回歸方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過(guò)0.5,則認(rèn)為線(xiàn)性回歸方程是理想的,試問(wèn)(1)中得到的線(xiàn)性回歸方程是否理想?

(附:線(xiàn)性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求的極值;

2)當(dāng)時(shí),討論的單調(diào)性;

3)若對(duì)任意的,,恒有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠(chǎng)對(duì)一批產(chǎn)品進(jìn)行了抽樣檢測(cè).右圖是根據(jù)抽樣檢測(cè)后的產(chǎn)品凈重(單位:克)數(shù)據(jù)繪制的頻率分布直方圖,其中產(chǎn)品凈重的范圍是[96,106],樣本數(shù)據(jù)分組為[9698),[98100),[100,102),[102,104),[104,106],已知樣本中產(chǎn)品凈重小于100克的個(gè)數(shù)是36,則樣本中凈重大于或等于98克并且小于104克的產(chǎn)品的個(gè)數(shù)是( ).

A. 90B. 75C. 60D. 45

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方形ABCD的邊長(zhǎng)為7,點(diǎn)MAB上,點(diǎn)NBC上,且AM=BN=3,現(xiàn)有一束光線(xiàn)從點(diǎn)M射向點(diǎn)N,光線(xiàn)每次碰到正方形的邊時(shí)反射,則這束光線(xiàn)從第一次回到原點(diǎn)M時(shí)所走過(guò)的路程為( )

A. B. 60 C. D. 70

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)拋物線(xiàn)的焦點(diǎn)的直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),且,拋物線(xiàn)的準(zhǔn)線(xiàn)軸交于,于點(diǎn),且四邊形的面積為,過(guò)的直線(xiàn)交拋物線(xiàn)于兩點(diǎn),且,點(diǎn)為線(xiàn)段的垂直平分線(xiàn)與軸的交點(diǎn),則點(diǎn)的橫坐標(biāo)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)與拋物線(xiàn)切于點(diǎn),直線(xiàn)過(guò)定點(diǎn)Q,且拋物線(xiàn)上的點(diǎn)到點(diǎn)Q的距離與其到準(zhǔn)線(xiàn)距離之和的最小值為.

1)求拋物線(xiàn)的方程及點(diǎn)的坐標(biāo);

2)設(shè)直線(xiàn)與拋物線(xiàn)交于(異于點(diǎn)P)兩個(gè)不同的點(diǎn)AB,直線(xiàn)PA,PB的斜率分別為,那么是否存在實(shí)數(shù),使得?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案