精英家教網 > 高中數學 > 題目詳情

【題目】已知動點 到點 的距離比它到直線 的距離小 ,記動點 的軌跡為 .若以 為圓心, 為半徑( )作圓,分別交 軸于 兩點,連結并延長 ,分別交曲線 兩點.
(1)求曲線 的方程;
(2)求證:直線 的斜率為定值.

【答案】
(1)解:動點 到點 的距離比它到直線 的距離小 ,可得動點 到點 的距離與它到直線 的距離相等,由定義可得曲線 方程為
(2)解:設 與拋物線方程 聯(lián)立得: ,
由題意有 ,
【解析】本題考查拋物線方程的求法,考查兩直線的斜率的比值是否為定值的判斷與求法,解題時要認真審題,注意直線方程的合理運用.
【考點精析】認真審題,首先需要了解拋物線的定義(平面內與一個定點和一條定直線的距離相等的點的軌跡稱為拋物線.定點稱為拋物線的焦點,定直線稱為拋物線的準線).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知橢圓的兩個焦點為F1(﹣ ,0),F(xiàn)2 ,0),M是橢圓上一點,若 =0,| || |=8.
(1)求橢圓的方程;
(2)點P是橢圓上任意一點,A1、A2分別是橢圓的左、右頂點,直線PA1 , PA2與直線x= 分別交于E,F(xiàn)兩點,試證:以EF為直徑的圓交x軸于定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了引導居民合理用水,某市決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價,具體劃分標準如表:

階梯級別

第一階梯水量

第二階梯水量

第三階梯水量

月用水量范圍(單位:立方米)

(0,10]

(10,15]

(15,+∞)

從本市隨機抽取了10戶家庭,統(tǒng)計了同一個月的用水量,得到如圖所示的莖葉圖.

(1)現(xiàn)要在這10戶家庭中任意選取3戶,求取到第二階梯水量的戶數的分布列和均值;
(2)用抽到的10戶家庭作為樣本估計全市的居民用水情況,從全市依次隨機抽取10戶,若抽到n戶月用水量為第二階梯水量的可能性最大,求出n的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】 (本小題滿分12)

已知圓C,直線過定點A (1,0).

1)若與圓C相切,求的方程;

2)若與圓C相交于P、Q兩點,求三角形CPQ的面積的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列中,若對任意都有為常數)成立,則稱為“等差比數列”,下面對“等差比數列” 的判斷:①不可能為;②等差數列一定是等差比數列; ③等比數列一定是等差比數列 ;④通項公式為(其中,且)的數列一定是等差比數列,其中正確的判斷是( )

A. ①③④ B. ②③④ C. ①④ D. ①③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線 ,以原點為圓心,雙曲線的實半軸長為半徑的圓與雙曲線的兩條漸近線相交于 四點,四邊形 的面積為 ,則雙曲線的離心率為( )
A.
B.2
C.
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ln(x+1)+ax,其中a∈R.
(Ⅰ) 當a=﹣1時,求證:f(x)≤0;
(Ⅱ) 對任意x2≥ex1>0,存在x∈(﹣1,+∞),使 成立,求a的取值范圍.(其中e是自然對數的底數,e=2.71828…)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為評估一種農作物的種植效果,選了n塊地作試驗田.這n塊地的畝產量(單位: )分別為 ,下面給出的指標中可以用來評估這種農作物畝產量穩(wěn)定程度的是( )
A. 的平均數
B. 的標準差
C. 的最大值
D. 的中位數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若關于x的不等式 至少有一個負數解,則實數a的取值范圍是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案