【題目】三棱柱底面是直角三角形,,側(cè)棱與底面成角為,底面上身影

1求證

2點,且,大;

3且當時,求二面角大。

【答案】證明見解析;;.

【解析】

試題分析:證明和平面內(nèi)的兩條相交直線垂直;通過證明,找到側(cè)棱和底面所成的角;原點,軸,,過且垂直于直線為,建系求解即可.

試題解析:⑴∵,,,

,………………4

,

四邊形菱形,又,,

側(cè)棱和底面所成的角,,

,即側(cè)棱與底面所成角………………8

原點,軸,,過且垂直于直線為,建立空間直角坐標系,

,,法向量

設(shè)法向量為,

,,,

二面角大小是銳二面角,二面角大小是……12

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)求下列函數(shù)的解析式:

(1)已知,求

(2) 已知函數(shù)是一次函數(shù),且滿足關(guān)系式,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修44:坐標系與參數(shù)方程

在直角坐標系中,直線經(jīng)過點,其傾斜角為,在以原點為極點, 軸非負半軸為極軸的極坐標系中(取相同的長度單位),曲線C的極坐標方程為
)若直線與曲線C有公共點,求的取值范圍;

)設(shè)為曲線C上任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1}.

(1)若BA,求實數(shù)m的取值范圍;

(2)當x∈R時,不存在元素x使xAxB同時成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究型學習小組調(diào)查研究學生使用智能手機對學習的影響.部分統(tǒng)計數(shù)據(jù)如下表:

使用智能手機

不使用智能手機

總計

學習成績優(yōu)秀

4

8

12

學習成績不優(yōu)秀

16

2

18

總計

20

10

30

附表:

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

經(jīng)計算的觀測值為10,則下列選項正確的是(  )

A. 有99.5%的把握認為使用智能手機對學習有影響

B. 有99.5%的把握認為使用智能手機對學習無影響

C. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習有影響

D. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習無影響

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,海上有、兩個相距,保持觀望所成的視角為,現(xiàn)從船派下一只小艇沿方向駛至進行作業(yè),且設(shè)

(1)分別表示,并求出的取值范圍;

(2)0晚上小艇在發(fā)出一道強烈的光線照射,至光線距離為,最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某研究型學習小組調(diào)查研究學生使用智能手機對學習的影響.部分統(tǒng)計數(shù)據(jù)如下表:

使用智能手機

不使用智能手機

總計

學習成績優(yōu)秀

4

8

12

學習成績不優(yōu)秀

16

2

18

總計

20

10

30

附表:

P(K2k0)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828

經(jīng)計算的觀測值為10,則下列選項正確的是(  )

A. 有99.5%的把握認為使用智能手機對學習有影響

B. 有99.5%的把握認為使用智能手機對學習無影響

C. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習有影響

D. 在犯錯誤的概率不超過0.001的前提下認為使用智能手機對學習無影響

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的中心在坐標原點,焦點在軸上,焦點到短軸端點的距離為2,離心率為.

(Ⅰ)求該橢圓的方程;

(Ⅱ)若直線與橢圓交于, 兩點且,是否存在以原點為圓心的定圓與直線相切?若存在求出定圓的方程;若不存在,請說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)是實數(shù),,

1)若函數(shù)為奇函數(shù),求的值;

2)試用定義證明:對于任意上為單調(diào)遞增函數(shù);

3)若函數(shù)為奇函數(shù),且不等式對任意恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

同步練習冊答案