【題目】某公司生產(chǎn)一批A產(chǎn)品需要原材料500噸,每噸原材料可創(chuàng)造利潤(rùn)12萬元.該公司通過設(shè)備升級(jí),生產(chǎn)這批A產(chǎn)品所需原材料減少了x噸,且每噸原材料創(chuàng)造的利潤(rùn)提高0.5x%;若將少用的x噸原材料全部用于生產(chǎn)公司新開發(fā)的B產(chǎn)品,每噸原材料創(chuàng)造的利潤(rùn)為12(a﹣ x)萬元(a>0).
(1)若設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn)不低于原來生產(chǎn)該批A產(chǎn)品的利潤(rùn),求x的取值范圍.
(2)若生產(chǎn)這批B產(chǎn)品的利潤(rùn)始終不高于設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn),求a的最大值.

【答案】
(1)解:由題意,12(500﹣x)(1+0.5x%)≥12×500,

∴x2﹣300x≤0,

∵x>0,

∴0<x≤300;


(2)解:生產(chǎn)B產(chǎn)品創(chuàng)造利潤(rùn)12(a﹣ x)x萬元,設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn)12(500﹣x)(1+0.5x%),

∴12(a﹣ x)x≤12(500﹣x)(1+0.5x%),

∴a≤ + +

+ ≥2 =4,當(dāng)且僅當(dāng) = ,即x=250時(shí)等號(hào)成立,

∴0<a≤5.5,

∴a的最大值是5.5


【解析】(1)由題意,12(500﹣x)(1+0.5x%)≥12×500,即可求x的取值范圍.(2)利用生產(chǎn)這批B產(chǎn)品的利潤(rùn)始終不高于設(shè)備升級(jí)后生產(chǎn)這批A產(chǎn)品的利潤(rùn),建立不等式,即可求a的最大值.
【考點(diǎn)精析】掌握基本不等式在最值問題中的應(yīng)用和函數(shù)的零點(diǎn)是解答本題的根本,需要知道用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”;函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓經(jīng)過點(diǎn),且與橢圓 有相同的焦點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若動(dòng)直線與橢圓有且只有一個(gè)公共點(diǎn),且與直線交于點(diǎn),問:以線段為直徑的圓是否經(jīng)過一定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若實(shí)數(shù)x、y、m滿足|x﹣m|<|y﹣m|,則稱x比y接近m.
(1)若2x比1接近3,求x的取值范圍;
(2)已知函數(shù)f(x)定義域D=(﹣∞,0)∪(0,1)∪(1,3)∪(3,+∞),對(duì)于任意的x∈D,f(x)等于x2﹣2x與x中接近0的那個(gè)值,寫出函數(shù)f(x)的解析式,若關(guān)于x的方程f(x)﹣a=0有兩個(gè)不同的實(shí)數(shù)根,求出a的取值范圍;
(3)已知a,b∈R,m>0且a≠b,求證: 接近0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲袋中有1只黑球,3只紅球;乙袋中有2只黑球,1只紅球.

(1)從甲袋中任取兩球,求取出的兩球顏色不相同的概率;

(2)從甲,乙兩袋中各取一球,求取出的兩球顏色相同的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在實(shí)數(shù)集R上的函數(shù),且y=f(x+1)是偶函數(shù),當(dāng)x1時(shí),f(x)=2x﹣1,則f(),f(),f()的大小關(guān)系是( 。

A. f()<f()<f( B. f()<f()<f(

C. f()<f()<f( D. f()<f()<f(

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)是定義域?yàn)?/span>R的奇函數(shù).

k值;

,試判斷函數(shù)單調(diào)性并求使不等式恒成立的t的取值范圍;

,且上的最小值為,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,對(duì)任意實(shí)數(shù),都有

(1)求的值并判斷函數(shù)的奇偶性;

(2)已知函數(shù),

驗(yàn)證函數(shù)是否滿足題干中的條件,即驗(yàn)證對(duì)任意實(shí)數(shù)是否成立;

若函數(shù),其中,討論函數(shù)的零點(diǎn)個(gè)數(shù)情況

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若圓C的半徑為1,圓心在第一象限,且與直線4x﹣3y=0和x軸都相切,則該圓的標(biāo)準(zhǔn)方程是(
A.(x﹣2)2+(y﹣1)2=1
B.(x﹣2)2+(y+1)2=1
C.(x+2)2+(y﹣1)2=1
D.(x﹣3)2+(y﹣1)2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點(diǎn)和直線相切.

(1)求圓的方程;

(2)若直線經(jīng)過點(diǎn),并且被圓截得的弦長(zhǎng)為2,求直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案