【題目】如圖,已知三棱柱ABC﹣A1B1C1的底面ABC是等邊三角形,且AA1⊥底面ABC,M為AA1的中點(diǎn),N在線段AB上,且AN=2NB,點(diǎn)P在CC1上.
(1)證明:平面BMC1⊥平面BCC1B1;
(2)當(dāng) 為何值時(shí),有PN∥平面BMC1?
【答案】
(1)解:連接B1C,與BC1交于O,連接MO,則MO⊥BC1,
取BC中點(diǎn)Q,連接AQ,OQ,則AQ∥MO,
∵CC1⊥AQ,∴CC1⊥MO,
∵BC1∩CC1=C1,∴MO⊥平面BCC1B1,
∵M(jìn)O平面BMC1,
∴平面BMC1⊥平面BCC1B1;
(2)解:取AE=2EM,則NE∥BM,
∵NE平面BMC1,BM平面BMC1,
∴NE∥平面BMC1,
= 時(shí),EM∥PC1,四邊形EMPC1是平行四邊形,∴MC1∥EP,∴EP∥平面BMC1,
∵NE∩EP=E,∴平面NEP∥∥平面BMC1,
∴PN∥平面BMC1.
【解析】(1)連接B1C,與BC1交于O,連接MO,則MO⊥BC1 , 取BC中點(diǎn)Q,連接AQ,OQ,則AQ∥MO,證明:MO⊥平面BCC1B1 , 即可證明平面BMC1⊥平面BCC1B1;(2)取AE=2EM,則NE∥BM, = 時(shí),EM∥PC1 , 四邊形EMPC1是平行四邊形,即可得出結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行,以及對(duì)平面與平面垂直的判定的理解,了解一個(gè)平面過另一個(gè)平面的垂線,則這兩個(gè)平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x)滿足f(x+2)=﹣f(x),當(dāng)x∈[0,1]時(shí),f(x)=2x﹣1,則( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x>0時(shí),;當(dāng)x∈[﹣3,﹣1]時(shí),記f(x)的最大值為m,最小值為n,則m﹣n=________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】司機(jī)在開機(jī)動(dòng)車時(shí)使用手機(jī)是違法行為,會(huì)存在嚴(yán)重的安全隱患,危及自己和他人的生命.為了研究司機(jī)開車時(shí)使用手機(jī)的情況,交警部門調(diào)查了100名機(jī)動(dòng)車司機(jī),得到以下統(tǒng)計(jì):在55名男性司機(jī)中,開車時(shí)使用手機(jī)的有40人,開車時(shí)不使用手機(jī)的有15人;在45名女性司機(jī)中,開車時(shí)使用手機(jī)的有20人,開車時(shí)不使用手機(jī)的有25人.
(Ⅰ)完成下面的2×2列聯(lián)表,并判斷是否有99.5%的把握認(rèn)為開車時(shí)使用手機(jī)與司機(jī)的性別有關(guān);
開車時(shí)使用手機(jī) | 開車時(shí)不使用手機(jī) | 合計(jì) | |
男性司機(jī)人數(shù) | |||
女性司機(jī)人數(shù) | |||
合計(jì) |
(Ⅱ)以上述的樣本數(shù)據(jù)來估計(jì)總體,現(xiàn)交警部門從道路上行駛的大量機(jī)動(dòng)車中隨機(jī)抽檢3輛,記這3輛車中司機(jī)為男性且開車時(shí)使用手機(jī)的車輛數(shù)為X,若每次抽檢的結(jié)果都相互獨(dú)立,求X的分布列和數(shù)學(xué)期望E(X).
參考公式與數(shù)據(jù): ,其中n=a+b+c+d.
P(Χ2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱之為塹堵,如圖,在塹堵ABC﹣A1B1C1中,AB=BC,AA1>AB,塹堵的頂點(diǎn)C1到直線A1C的距離為m,C1到平面A1BC的距離為n,則 的取值范圍是( )
A.(1, )
B.( , )
C.( , )
D.( , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“楊輝三角”又稱“賈憲三角”,是因?yàn)橘Z憲約在公元1050年首先使用“賈憲三角”進(jìn)行高次開方運(yùn)算,而楊輝在公元1261年所著的《詳解九章算法》一書中,輯錄了賈憲三角形數(shù)表,并稱之為“開方作法本源”圖.下列數(shù)表的構(gòu)造思路就源于“楊輝三角”.該表由若干行數(shù)字組成,從第二行起,每一行中的數(shù)字均等于其“肩上”兩數(shù)之和,表中最后一行僅有一個(gè)數(shù),則這個(gè)數(shù)是( )
A.2017×22016
B.2018×22015
C.2017×22015
D.2018×22016
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=2alnx+x2﹣(a+4)x+1(a為常數(shù))
(1)若a>0,討論f(x)的單調(diào)性;
(2)若對(duì)任意的 a∈(1, ),都存在 x0∈(3,4]使得不等式f(x0)+ln a+1>m(a﹣a2)+2a ln 成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在下列命題中:①兩個(gè)函數(shù)的對(duì)應(yīng)法則和值域相同,則這兩個(gè)是同一個(gè)函數(shù);②在上單調(diào)遞增,③若函數(shù)的定義域?yàn)?/span>,則函數(shù)的定義域?yàn)?/span>;④若函數(shù)在其定義域內(nèi)不是單調(diào)函數(shù),則不存在反函數(shù);⑤函數(shù)的最小值為4;⑥若關(guān)于的不等式在區(qū)間內(nèi)恒成立,則實(shí)數(shù)m的范圍是其中真命題的序號(hào)有_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)a=1時(shí),判斷f(x)的單調(diào)性;
(2)若f(x)在[0,+∞)上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com