觀察下列不等式:

,


照此規(guī)律,第五個不等式為   
【答案】分析:由題設(shè)中所給的三個不等式歸納出它們的共性:左邊式子是連續(xù)正整數(shù)平方的倒數(shù)和,最后一個數(shù)的分母是不等式序號n+1的平方,右邊分式中的分子與不等式序號n的關(guān)系是2n+1,分母是不等式的序號n+1,得出第n個不等式,即可得到通式,再令n=5,即可得出第五個不等式
解答:解:由已知中的不等式
1+,,1++,…
得出左邊式子是連續(xù)正整數(shù)平方的倒數(shù)和,最后一個數(shù)的分母是不等式序號n+1的平方
右邊分式中的分子與不等式序號n的關(guān)系是2n+1,分母是不等式的序號n+1,
故可以歸納出第n個不等式是 1+…+=,(n≥2),
所以第五個不等式為1+++++
故答案為:1+++++
點(diǎn)評:本題考查歸納推理,解題的關(guān)鍵是根據(jù)所給的三個不等式得出它們的共性,由此得出通式,本題考查了歸納推理考察的典型題,具有一般性
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列不等式:
1
2
•1
1
1
1
2
1
3
•(1+
1
3
)
1
2
•(
1
2
+
1
4
)
,
1
4
•(1+
1
3
+
1
5
)
1
3
•(
1
2
+
1
4
+
1
6
)
,…,由此猜測第n個不等式為
 
.(n∈N*)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

觀察下列不等式:1>
1
2
,1+
1
2
+
1
3
>1,1+
1
2
+
1
3
+…+
1
7
3
2
,1+
1
2
+
1
3
+…+
1
15
>2,1+
1
2
+
1
3
+…+
1
31
5
2
,…,由此猜測第n個不等式為
 
(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•陜西)觀察下列不等式:
1+
1
22
3
2

1+
1
22
+
1
32
5
3
,
1+
1
22
+
1
32
+
1
42
7
4


照此規(guī)律,第五個不等式為
1+
1 
22
+
1 
32
+
1 
42
+
1 
52
+
1 
62
11
6 
1+
1 
22
+
1 
32
+
1 
42
+
1 
52
+
1 
62
11
6 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,觀察下列不等式:①x+
1
x
≥2
,②x+
4
x2
≥3
③x+
27
x3
≥4,…,則第n個不等式為
x+
nn
xn
≥n+1
x+
nn
xn
≥n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若xi>0(i=1,2,3,…,n),觀察下列不等式:(x1+x2)(
1
x1
+
1
x2
)≥4,(x1+x2+x3)(
1
x1
+
1
x2
1
x3
)≥9,…,

請你猜測(x1+x2+…+xn)(
1
x1
+
1
x2
+…+
1
xn
)滿足的不等式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

同步練習(xí)冊答案