【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1t虧損300.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直圖,如右圖所示.經(jīng)銷商為下一個銷售季度購進了130t該農(nóng)產(chǎn)品.(單位:t,100≤≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

)將T表示為的函數(shù);

)根據(jù)直方圖估計利潤T不少于57000元的概率.

【答案】0.7

【解析】

試題分析:(I)由題意先分段寫出,當(dāng)X∈[100,130)時,當(dāng)X∈[130150)時,和利潤值,最后利用分段函數(shù)的形式進行綜合即可.

II)由(I)知,利潤T不少于57000元,當(dāng)且僅當(dāng)120≤X≤150.再由直方圖知需求量X∈[120150]的頻率為0.7,利用樣本估計總體的方法得出下一個銷售季度的利潤T不少于57000元的概率的估計值.

解:(I)由題意得,當(dāng)X∈[100,130)時,T=500X﹣300130﹣X=800X﹣39000,

當(dāng)X∈[130,150]時,T=500×130=65000

∴T=

II)由(I)知,利潤T不少于57000元,當(dāng)且僅當(dāng)120≤X≤150

由直方圖知需求量X∈[120,150]的頻率為0.7,

所以下一個銷售季度的利潤T不少于57000元的概率的估計值為0.7

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用a代表紅球,b代表藍球,c代表黑球,由加法原理及乘法原理,從1個紅球和1個藍球中取出若干個球的所有取法可由(1+a)(1+b)的展開式1+a+b+ab表示出來,如:“1”表示一個球都不取、“a”表示取出一個紅球,而“ab”則表示把紅球和藍球都取出來.以此類推,下列各式中,其展開式可用來表示從5個無區(qū)別的紅球、5個無區(qū)別的藍球、5個有區(qū)別的黑球中取出若干個球,且所有的藍球都取出或都不取出的所有取法的是(
A.(1+a+a2+a3+a4+a5)(1+b5)(1+c)5
B.(1+a5)(1+b+b2+b3+b4+b5)(1+c)5
C.(1+a)5(1+b+b2+b3+b4+b5)(1+c5
D.(1+a5)(1+b)5(1+c+c2+c3+c4+c5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地級市共有中學(xué)生,其中有學(xué)生在年享受了“國家精準扶貧”政策,在享受“國家精準扶貧”政策的學(xué)生中困難程度分為三個等次:一般困難、很困難、特別困難,且人數(shù)之比為,為進一步幫助這些學(xué)生,當(dāng)?shù)厥姓O(shè)立“專項教育基金”,對這三個等次的困難學(xué)生每年每人分別補助元、元、元.經(jīng)濟學(xué)家調(diào)查發(fā)現(xiàn),當(dāng)?shù)厝司芍淠晔杖胼^上一年每增加,一般困難的學(xué)生中有會脫貧,脫貧后將不再享受“精準扶貧”政策,很困難的學(xué)生有轉(zhuǎn)為一般困難學(xué)生,特別困難的學(xué)生中有轉(zhuǎn)為很困難學(xué)生.現(xiàn)統(tǒng)計了該地級市年到年共年的人均可支配年收入,對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中統(tǒng)計量的值,其中年份時代表年,時代表年,……依此類推,且(單位:萬元)近似滿足關(guān)系式.(年至年該市中學(xué)生人數(shù)大致保持不變)

(1)估計該市年人均可支配年收入為多少萬元?

(2)試問該市年的“專項教育基金”的財政預(yù)算大約為多少萬元?

附:對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),…,,其回歸直線方程的斜率和截距的最小二乘估計分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面平面,四邊形是邊長為4的正方形,,的中點.

(1)在圖中作出并指明平面和平面的交線;

(2)求證:;

(3)當(dāng)時,求與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲乙兩人進行圍棋比賽,約定先連勝兩局者直接贏得比賽,若賽完5局仍未出現(xiàn)連勝,則判定獲勝局數(shù)多者贏得比賽.假設(shè)每局甲獲勝的概率為 ,乙獲勝的概率為 ,各局比賽結(jié)果相互獨立.
(1)求甲在4局以內(nèi)(含4局)贏得比賽的概率;
(2)記X為比賽決勝出勝負時的總局數(shù),求X的分布列和均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期是,且在區(qū)間上單調(diào)遞減.

(1)求函數(shù)的解析式;

(2)若關(guān)于的方程

上有實數(shù)解,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】廈門市從2003年起每年都舉行國際馬拉松比賽,每年馬拉松比賽期間,都會吸引許多外地游客到廈門旅游,這將極大地推進廈門旅游業(yè)的發(fā)展,旅游部門將近六年馬拉松比賽期間外地游客數(shù)量統(tǒng)計如下表:

年份

2012

2013

2014

2015

2016

2017

比賽年份編號

外地游客人數(shù)(萬人)

(1)若用線性回歸模型擬合的關(guān)系,求關(guān)于的線性回歸方程;(精確到

(2)若用對數(shù)回歸模型擬合的關(guān)系,可得回歸方程,且相關(guān)指數(shù),請用相關(guān)指數(shù)說明選擇哪個模型更合適.(精確到

參考數(shù)據(jù):,,,

參考公式:回歸方程中,,;相關(guān)指數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中

(Ⅰ)討論的單調(diào)性

(Ⅱ)若成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P(0,﹣1)是橢圓C1 + =1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑,l1 , l2是過點P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點,l2交橢圓C1于另一點D.

(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時直線l1的方程.

查看答案和解析>>

同步練習(xí)冊答案