【題目】已知關(guān)于有表格中的數(shù)據(jù),線性相關(guān),由最小二乘法得.

2

4

5

6

8

30

40

60

50

70

(1)求的線性回歸方程;

(2)現(xiàn)有第二個(gè)線性模型:,且.若與(1)的線性模型比較,哪一個(gè)線性模型擬合效果比較好,請(qǐng)說明理由

【答案】(1) =6.5x+17.5;(2) (1)的線性模型擬合效果比較好.

【解析】分析:(1)已知,可設(shè)線性回歸方程為=6.5x+.要求方程,應(yīng)利用樣本點(diǎn)的中心在回歸直線上,根據(jù)表中的數(shù)據(jù)可求得=5,=50. 代入方程可求得=17.5.進(jìn)而可得y與x的線性回歸方程為=6.5x+17.5 . (2)要看哪一個(gè)線性模型擬合效果比較好,應(yīng)求第一個(gè)模型的相關(guān)指數(shù),由(1)的線性模型得yi-與yi-的關(guān)系如下表所示:

yi-

-0.5

-3.5

10

-6.5

0.5

yi-

-20

-10

10

0

20

由表中的數(shù)據(jù)和公式求得。所以R>R2。所以(1)的線性模型擬合效果比較好。

詳解:(1)依題意設(shè)y與x的線性回歸方程為=6.5x+.

由表中的數(shù)據(jù)可得 ,

因?yàn)橹本=6.5x+經(jīng)過(,),

所以50=6.5×5+。

所以=17.5.

所以y與x的線性回歸方程為=6.5x+17.5 .

(2)由(1)的線性模型得yi-與yi-的關(guān)系如下表所示:

yi-

-0.5

-3.5

10

-6.5

0.5

yi-

-20

-10

10

0

20

所以 ,

所以=1-

由于R=0.845,R2=0.82

所以R>R2,

所以(1)的線性模型擬合效果比較好.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=|x+m|.
(Ⅰ) 解關(guān)于m的不等式f(1)+f(﹣2)≥5;
(Ⅱ)當(dāng)x≠0時(shí),證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若,求函數(shù)的極值;

(2)若函數(shù)上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面為矩形,的中點(diǎn),且,,.

(1)求證:平面

(2)若點(diǎn)為線段上一點(diǎn),且,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),那么下列結(jié)論中錯(cuò)誤的是( )

A. 的極小值點(diǎn),則在區(qū)間上單調(diào)遞減

B. ,使

C. 函數(shù)的圖像可以是中心對(duì)稱圖形

D. 的極值點(diǎn),則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M在橢圓C: +y2=1上,過M做x軸的垂線,垂足為N,點(diǎn)P滿足 =
(Ⅰ)求點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)點(diǎn)Q在直線x=﹣3上,且 =1.證明:過點(diǎn)P且垂直于OQ的直線l過C的左焦點(diǎn)F.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0),四點(diǎn)P1(1,1),P2(0,1),P3(﹣1, ),P4(1, )中恰有三點(diǎn)在橢圓C上.(12分)
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點(diǎn)且與C相交于A,B兩點(diǎn).若直線P2A與直線P2B的斜率的和為﹣1,證明:l過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某氣象儀器研究所按以下方案測(cè)試一種“彈射型”氣象觀測(cè)儀器的垂直彈射高度:A、B、C三地位于同一水平面上,在C處進(jìn)行該儀器的垂直彈射,觀測(cè)點(diǎn)A、B兩地相距100米,∠BAC=60°,在A地聽到彈射聲音的時(shí)間比在B地晚秒. A地測(cè)得該儀器彈至最高點(diǎn)H時(shí)的仰角為30°.

(1)求A、C兩地的距離;

(2)求該儀器的垂直彈射高度CH.(聲音的傳播速度為340米/秒)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),討論的單調(diào)性;

(2)設(shè),當(dāng)時(shí),若對(duì)任意,存在使,求實(shí)數(shù)取值.

查看答案和解析>>

同步練習(xí)冊(cè)答案