已知函數(shù)
(1)當(dāng)時(shí),求的單調(diào)區(qū)間,如果函數(shù)僅有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),試比較與1的大小.
(1)    
(2)? ?當(dāng)
?

試題分析:(Ⅰ)當(dāng)時(shí),,定義域是,
, 令,得.                         
當(dāng)時(shí),,當(dāng)時(shí),,
函數(shù)、上單調(diào)遞增,在上單調(diào)遞減.  
的極大值是,極小值是
當(dāng)時(shí),;當(dāng)時(shí),,
當(dāng)僅有一個(gè)零點(diǎn)時(shí),的取值范圍是  
(2)當(dāng)=2時(shí),定義域?yàn)椋?,+).
令h(x)=-1=-1,
,  
?
?當(dāng)
? 
點(diǎn)評:本題主要考查函數(shù)導(dǎo)數(shù)運(yùn)算法則、利用導(dǎo)數(shù)求函數(shù)的極值、證明不等式等基礎(chǔ)知識,考查分類討論思想和數(shù)形結(jié)合思想,考查考生的計(jì)算能力及分析問題、解決問題的能力和創(chuàng)新意識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù),則函數(shù)的零點(diǎn)的個(gè)數(shù)為(     )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某市居民自來水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水不超過4噸時(shí),每噸為1.80元,當(dāng)居民用水超過4噸時(shí),超過部分每噸3.00元。若某月某用戶用水量為x噸,交水費(fèi)為y元。
(1)求y關(guān)于x的函數(shù)關(guān)系
(2)若某用戶某月交水費(fèi)為31.2元,求該用戶該月的用水量。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)是定義在R上的奇函數(shù),且當(dāng)時(shí),不等式成立,若 ,則的大小關(guān)系是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

將邊長為米的一塊正方形鐵皮的四角各截去一個(gè)大小相同的小正方形,然后將四邊折起做成一個(gè)無蓋的方盒.欲使所得的方盒有最大容積,截去的小正方形的邊長應(yīng)為多少米?方盒的最大容積為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對于函數(shù) 
(1)探索函數(shù)的單調(diào)性;
(2)是否存在實(shí)數(shù),使函數(shù)為奇函數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù),則
A.為偶函數(shù),且在上單調(diào)遞減
B.為偶函數(shù),且在上單調(diào)遞增
C.為奇函數(shù),且在上單調(diào)遞增
D.為奇函數(shù),且在上單調(diào)遞減

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,則=(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù)的圖像如圖所示,設(shè)兩函數(shù)的圖像交于點(diǎn).

(1)請指出示意圖中曲線分別對應(yīng)哪一個(gè)函數(shù)?
(2),且,指出的值,并說明理由;
(3)結(jié)合函數(shù)圖像示意圖,請把
四個(gè)數(shù)按從小到大的順序排列.

查看答案和解析>>

同步練習(xí)冊答案