【題目】使用支付寶和微信支付已經(jīng)成為廣大消費者最主要的消費支付方式,某超市通過統(tǒng)計發(fā)現(xiàn)一周內(nèi)超市每天的凈利潤(萬元)與每天使用支付寶和微信支付的人數(shù)(千人)具有線性相關關系,并得到最近一周的7組數(shù)據(jù)如下表,并依此作為決策依據(jù).

(1)作出散點圖,并求出回歸方程(,精確到);

(2)超市為了刺激周一消費,擬在周一開展使用支付寶和微信支付隨機抽獎活動,總獎金7萬元.根據(jù)市場調(diào)查,抽獎活動能使使用支付寶和微信支付消費人數(shù)增加7千人,試決策超市是否有必要開

展抽獎活動?

(3)超市管理層決定:從周一到周日,若第二天的凈利潤比前一天增長超過兩成,則對全體員工進行獎勵,在(Ⅱ)的決策下,求全體員工連續(xù)兩天獲得獎勵的概率.

參考數(shù)據(jù): ,.

參考公式:,,.

【答案】(1);(2)見解析;(3)

【解析】

(1)通過表格描點即可,先計算,然后通過公式計算出線性回歸方程;

2)先計算活動開展后使用支付寶和微信支付的人數(shù)為(千人),代入(1)問得到結果;

3)先判斷周一到周日全體員工只有周二、周三、周四、周日獲得獎勵,從而確定基本事件,再找出連續(xù)兩天獲得獎勵的基本事件,故可計算出全體員工連續(xù)兩天獲得獎勵的概率.

(1)散點圖如圖所示

,

關于的回歸方程為

(2)活動開展后使用支付寶和微信支付的人數(shù)為(千人)

由(1)得,當時,

此時超市的凈利潤約為,故超市有必要開展抽獎活動

(3)由于,,,,,

故從周一到周日全體員工只有周二、周三、周四、周日獲得獎勵

從周一到周日中連續(xù)兩天,基本事件為(周一、周二),(周二、周三),(周三、周四),(周四、周五),(周五、周六),(周六、周日),共6個基本事件

連續(xù)兩天獲得獎勵的基本事件為(周二、周三),(周三、周四),共2個基本事件

故全體員工連續(xù)兩天獲得獎勵的概率為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】《史記》卷六十五《孫子吳起列傳第五》中有這樣一道題:齊王與田忌賽馬,田忌的上等馬優(yōu)于齊王的中等馬,劣于齊王的上等馬,田忌的中等馬優(yōu)于齊王的下等馬,劣于齊王的中等馬,田忌的下等馬劣于齊王的下等馬,現(xiàn)從雙方的馬匹中隨機選一匹馬進行一場比賽,齊王獲勝的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取件,測量這些產(chǎn)品的一項質(zhì)量指標值,由測量結果得如頻率分布直方圖:

(1)求這件產(chǎn)品質(zhì)量指標值的樣本平均數(shù)和樣本方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)由直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,其中近似為樣本平均數(shù),近似為樣本方差.

①利用該正態(tài)分布,求;

②某用戶從該企業(yè)購買了件這種產(chǎn)品,記表示這件產(chǎn)品中質(zhì)量指標值位于區(qū)間的產(chǎn)品件數(shù).利用①的結果,求.

附:.若,則,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】觀察下列等式:

按此規(guī)律,第個等式可為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x﹣alnx+
(Ⅰ)若a>1,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>3,函數(shù)g(x)=a2x2+3,若存在x1 , x2∈[ ,2],使得|f(x1)﹣g(x2)|<9成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線的參數(shù)方程:為參數(shù)),曲線的參數(shù)方程:為參數(shù)),且直線交曲線兩點.

(Ⅰ)將曲線的參數(shù)方程化為普通方程,并求時,的長度;

(Ⅱ) 已知點,求當直線傾斜角變化時,的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是函數(shù)的部分圖象.

1)求函數(shù)的表達式;

2)若函數(shù)滿足方程,求在內(nèi)的所有實數(shù)根之和;

3)把函數(shù)的圖象的周期擴大為原來的兩倍,然后向右平移個單位,再把縱坐標伸長為原來的兩倍,最后向上平移一個單位得到函數(shù)的圖象.若對任意的,方程在區(qū)間上至多有一個解,求正數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設矩形的長為.

(1)設總造價(元)表示為長度的函數(shù);

(2)當取何值時,總造價最低,并求出最低總造價.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為圓上一動點,圓心關于軸的對稱點為,點分別是線段上的點,且.

(1)求點的軌跡方程;

(2)直線與點的軌跡只有一個公共點,且點在第二象限,過坐標原點且與垂直的直線與圓相交于兩點,求面積的取值范圍.

查看答案和解析>>

同步練習冊答案