【題目】設(shè),定義,且為常數(shù)),若,,.以下四個(gè)命題中為真命題的是__________.

不存在極值;②若的反函數(shù)為,且函數(shù)與函數(shù)有兩個(gè)公共點(diǎn),則;③若上是減函數(shù),則實(shí)數(shù)的取值范圍是;④若,則在的曲線上存在兩點(diǎn),使得過(guò)這兩點(diǎn)的切線互相垂直.

【答案】②③

【解析】

對(duì),的導(dǎo)數(shù)進(jìn)行判斷,對(duì)②,因?yàn)?/span>,所以其反函數(shù),由的圖像與性質(zhì)進(jìn)行判斷,對(duì)③,因?yàn)?/span>上是減函數(shù),所以上恒成立,求得的取值范圍,對(duì)④,判斷曲線上是否存兩點(diǎn)處導(dǎo)數(shù)之積為.

,因?yàn)?/span>,,所以存在,使得所以有極小值,①是假命題因?yàn)?/span>,所以其反函數(shù),過(guò)原點(diǎn)做圖像的切線,切線斜率為,又因?yàn)楹瘮?shù)與函數(shù)有兩個(gè)公共點(diǎn),則,②為真命題;因?yàn)?/span>上是減函數(shù),所以上恒成立,即上恒成立,即恒成立,得,所以③是真命題;若,則,所以,有,即不成立,的曲線上不存在兩點(diǎn),使得過(guò)這兩點(diǎn)的切線互相垂直,④為假命題,故答案為②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中三年級(jí)共有人,其中男生人,女生人,為調(diào)查該年級(jí)學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí)).

(Ⅰ)應(yīng)收集多少位女生樣本數(shù)據(jù)?

(Ⅱ)根據(jù)這個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示).其中樣本數(shù)據(jù)分組區(qū)間為: , , , , .估計(jì)該年組學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)個(gè)小時(shí)的概率.

(Ⅲ)在樣本數(shù)據(jù)中,有位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)個(gè)小時(shí).請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為“該年級(jí)學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān)”.

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有兩個(gè)極值點(diǎn).

(1)求實(shí)數(shù)的取值范圍;

(2)設(shè),若函數(shù)的兩個(gè)極值點(diǎn)恰為函數(shù)的兩個(gè)零點(diǎn),當(dāng)時(shí),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=f(x)是定義在R上的奇函數(shù),且當(dāng)x0時(shí),f(x)=-x2+ax.

(1)a=-2,求函數(shù)f(x)的解析式;

(2)若函數(shù)f(x)R上的單調(diào)減函數(shù),

a的取值范圍;

若對(duì)任意實(shí)數(shù)m,f(m-1)+f(m2+t)<0恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得=80, =20, =184, =720.

(1)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線性回歸方程ybxa

(2)判斷變量xy之間是正相關(guān)還是負(fù)相關(guān);

(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.

附:線性回歸方程ybxa中, ,ab,其中, 為樣本平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過(guò)人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國(guó)道路交通安全法》 第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):

月份

1

2

3

4

5

違章駕駛員人數(shù)

120

105

100

90

85

(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+

(2)預(yù)測(cè)該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);

(3)交警從這5個(gè)月內(nèi)通過(guò)該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:

不禮讓斑馬線

禮讓斑馬線

合計(jì)

駕齡不超過(guò)1年

22

8

30

駕齡1年以上

8

12

20

合計(jì)

30

20

50

能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?

參考公式及數(shù)據(jù):,.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某果農(nóng)選取一片山地種植紅柚,收獲時(shí),該果農(nóng)隨機(jī)選取果樹(shù)20株作為樣本測(cè)量它們每一株的果實(shí)產(chǎn)量(單位:kg),獲得的所有數(shù)據(jù)按照區(qū)間(40,45],(45,50],(50,55],(55,60]進(jìn)行分組,得到頻率分布直方圖如圖.已知樣本中產(chǎn)量在區(qū)間(45,50]上的果樹(shù)株數(shù)是產(chǎn)量在區(qū)間(50,60]上的果樹(shù)株數(shù)的倍.

(1)求的值;

(2)求樣本的平均數(shù);

(3)從樣本中產(chǎn)量在區(qū)間(50,60]上的果樹(shù)里隨機(jī)抽取兩株,求產(chǎn)量在區(qū)間(55,60]上的果樹(shù)至少有一株被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面,底面是直角梯形,,上的一點(diǎn).

(1)求證:平面平面;

(2)若的中點(diǎn),,且直線與平面所成角的正弦值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為奇函數(shù).

1)求a的值,并證明R上的增函數(shù);

2)若關(guān)于t的不等式f(t22t)f(2t2k)0的解集非空,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案