證明:
n |
|
k=1 |
<,(n∈N
*).
考點(diǎn):不等式的證明
專題:證明題,綜合法
分析:先證明n>1時(shí),n
2>n(n-1),可得
<=
-,利用疊加法,可得結(jié)論.
解答:
證明:∵n>1時(shí),n
2>n
2-n,
∴n
2>n(n-1),
∴取倒數(shù)可得
<=
-,
∴n>1時(shí),左邊-1<1-
+
-
+…
-=1-
<
,
∴左邊<
<
.
n=1時(shí),1<
.
綜上
n |
|
k=1 |
<,(n∈N
*).
點(diǎn)評(píng):本題考查不等式的證明,考查放縮法的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
八個(gè)一樣的小球排成一排,涂上紅、白兩種顏色,5個(gè)涂紅色,3個(gè)涂白色.若涂紅色的小球恰好有三個(gè)連續(xù),則不同涂法共有( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
三人向同一靶位射擊,中靶的概率分別為
、
、
,如果三人都打一次靶,求恰好一人中靶的概率.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=
(a為常數(shù)).
(1)當(dāng)a>0時(shí),求f(x)的極值;
(2)設(shè)函數(shù)g(x)=x
3-ax
2+2,若x∈[-1,1]時(shí),f(x)≤g(x)恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知集合A={-1,0,1},對(duì)于數(shù)列{a
n}中,a
i∈A(i=1,2,3,…,n).
(Ⅰ)若50項(xiàng)數(shù)列{a
n}滿足
50 |
|
i=1 |
ai=-9,
50 |
|
i=1 |
(ai-1)2=107,則數(shù)列{a
n}中有多少項(xiàng)取值為零?(
n |
|
i=1 |
ai=a1+a2+…+an , n∈N*)
(Ⅱ)若各項(xiàng)非零數(shù)列{a
n}和新數(shù)列{b
n}滿足b
i-b
i-1=a
i-1(i=2,3,…,n).
(。┤羰醉(xiàng)b
1=0,末項(xiàng)b
n=n-1,求證數(shù)列{b
n}是等差數(shù)列;
(ⅱ)若首項(xiàng)b
1=0,末項(xiàng)b
n=0,記數(shù)列{b
n}的前n項(xiàng)和為S
n,求S
n的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
交管部門遵循公交優(yōu)先的原則,在某路段開設(shè)了一條僅供車身長為10m的公共汽車行駛的專用車道,據(jù)交管部門收集的大量數(shù)據(jù)分析發(fā)現(xiàn),該車道上行駛著的前后兩輛公共汽車間的安全距離d(m)與車速v(km/h)之間滿足二次函數(shù)關(guān)系d=f(v),現(xiàn)已知車速為15km/h時(shí),安全距離為8m;車速為45km/h時(shí),安全距離為38m;出現(xiàn)堵車狀況時(shí),兩車安全距離為2m.
(1)試確定d關(guān)于v的函數(shù)關(guān)系式d=f(v);
(2)車速v(km/h)為多少時(shí),單位時(shí)段內(nèi)通過這條車道的公共汽車數(shù)量最多?最多是多少輛?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
對(duì)于任意正整數(shù)n,證明:
2(-1)<1+++…+<2.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)
f(x)=x2+ax+.
(1)若
x∈(,+∞)時(shí),f(x)單調(diào)遞增,求a的取值范圍;
(2)討論方程f(x)+|lnx|-ax-b=0的實(shí)數(shù)根的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知命題p:1-a•2x≥0在x∈(-∞,0]恒成立,命題q:?x∈R,ax2-x+a>0.若命題p或q為真,命題p且q為假,求實(shí)數(shù)a的范圍.
查看答案和解析>>