已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)證明不論m取什么實(shí)數(shù),直線l與圓C恒交于兩點(diǎn);
(2)求直線l被圓C截得的線段的最短長度.并求此時(shí)m的值.
(1)證明:直線方程可化為(2x+y-7)m+(x+y-4)=0,m∈R,這表明此直線經(jīng)過一個(gè)定點(diǎn),由得定點(diǎn)坐標(biāo)為A(3,1). 又(3-1)2+(1-2)2<25, 所以點(diǎn)A在圓內(nèi),直線l一定與圓有兩個(gè)交點(diǎn). (2)解:當(dāng)圓心與點(diǎn)A的連線與過A的弦垂直時(shí),截得的弦長最短, ∴. 解之,得m=-. |
說明直線與圓恒相交,只要說明直線恒過圓內(nèi)一點(diǎn),所以求出直線l所過的定點(diǎn),此定點(diǎn)在圓內(nèi),問題(1)即得證;直線被圓截得的弦中最短的一條就是過定點(diǎn)且與過定點(diǎn)的直徑垂直的弦,其斜率可由直徑的斜率求得. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)證明不論m取什么實(shí)數(shù),直線l與圓恒交于兩點(diǎn);
(2)求直線被圓C截得的弦長最小時(shí)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年人教A版高中數(shù)學(xué)必修二4.2直線、圓的位置關(guān)系練習(xí)卷(一) 題型:解答題
已知圓C:(x-1) +(y-2) =25,直線L:(2m+1)x+(m+1)y-7m-4=0(m∈R)
(1)證明:無論m取什么實(shí)數(shù),L與圓恒交于兩點(diǎn).
(2)求直線被圓C截得的弦長最小時(shí)L的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆吉林省長春市高一上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知圓C:(x-1)2+(y-2)2=25,直線l:(2m+1)x+(m+1)y-7m-4=0(m∈R).
(1)證明:直線l與圓相交;
(2)求直線l被圓截得的弦長最小時(shí)的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(1)求PA、PB所在直線的方程;
(2)求切線長|PA|;
(3)求∠APB的正弦值;
(4)求AB的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com