若函數(shù)f (x)=-(a2-11a+10)x2-(a-1)x+2對一切實數(shù)x恒為正值,則實數(shù)a的取值范圍是( )
A.1≤a≤9
B.1<a<9
C.a(chǎn)≤1或a>9
D.1≤a<9
【答案】
分析:對于函數(shù)f(x)=ax
2+bx+c,首先對二次項的系數(shù)分a=0和a≠0討論,然后對a≠0再分
與
解出即可.
解答:解:①當(dāng)-(a
2-11a+10)=0時,解得a=1或a=10.
當(dāng)a=10時,f(x)=-9x+2不滿足對一切實數(shù)x恒為正值,故舍去.
當(dāng)a=1時,f(x)=2滿足對一切實數(shù)x恒為正值,因此a=1適合題意.
②當(dāng)-(a
2-11a+10)>0時,解得1<a<10.
要使函數(shù)f (x)=-(a
2-11a+10)x
2-(a-1)x+2對一切實數(shù)x恒為正值,
則必有△=(a-1)
2+8(a
2-11a+10)<0,又1<a<10,
解得1<a<9,滿足題意.
③當(dāng)-(a
2-11a+10)<0時,解得a<1或a>10.
要使函數(shù)f (x)=-(a
2-11a+10)x
2-(a-1)x+2對一切實數(shù)x恒為正值,
則必有△=(a-1)
2+8(a
2-11a+10)<0,又a<1或a>10,
解得a∈∅.
綜上可知:實數(shù)a的取值范圍是1≤a<9.
故選D.
點評:熟練掌握三個“二次”與判別式△的關(guān)系是解題的關(guān)鍵.