的位置關(guān)系為(    )
A.外切B.內(nèi)切C.外離D.內(nèi)含
A

試題分析:,圓心距等于兩半徑之和,所以圓的位置關(guān)系為外切,選A。
點評:簡單題,可以利用“幾何法”和“代數(shù)法”兩種思路。
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓及點,在圓上任取一點,連接,做線段的中垂線交直線于點.
(1)當點在圓上運動時,求點的軌跡的方程;
(2)設(shè)軌跡軸交于兩點,在軌跡上任取一點,直線分別交軸于兩點,求證:以線段為直徑的圓過兩個定點,并求出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知圓和圓,動圓M與圓,圓都相切,動圓的圓心M的軌跡為兩個橢圓,這兩個橢圓的離心率分別為,),則的最小值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(坐標系與參數(shù)方程選做題)在極坐標系中,設(shè)曲線的交點分別為、,則線段的垂直平分線的極坐標方程為            .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

動圓M過定點A(-,0),且與定圓A´:(x)2y2=12相切.

(1)求動圓圓心M的軌跡C的方程;
(2)過點P(0,2)的直線l與軌跡C交于不同的兩點E、F,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓,直線,
(1)求證:直線與圓恒相交;
(2)當時,過圓上點作圓的切線交直線點,為圓上的動點,求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

一動圓與圓外切,與圓內(nèi)切.
(I)求動圓圓心M的軌跡方程.(II)試探究圓心M的軌跡上是否存在點,使直線的斜率?若存在,請指出共有幾個這樣的點?并說明理由(不必具體求出這些點的坐標)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

⊙O1極坐標方程為,⊙O2參數(shù)方程為為參數(shù)),則⊙
O1與⊙O2公共弦的長度為(    )
A.B.C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

兩圓的位置關(guān)系是(   )
A 相離           B 相交         C 內(nèi)切           D 外切

查看答案和解析>>

同步練習冊答案