【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù),),在以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程是,等邊的頂點都在上,且點,,按照逆時針方向排列,點的極坐標(biāo)為.
(Ⅰ)求點,,的直角坐標(biāo);
(Ⅱ)設(shè)為上任意一點,求點到直線的距離的取值范圍.
【答案】(Ⅰ)點的直角坐標(biāo)為,點的直角坐標(biāo)為,點的直角坐標(biāo)為.
(Ⅱ)
【解析】
(Ⅰ)由點的極坐標(biāo)和,,的排列順序,得到點和點的極坐標(biāo),再由求出,,的直角坐標(biāo)即可;
(Ⅱ)由點和點的坐標(biāo)可得直線的方程,設(shè)點,由點到直線距離公式表示出點到直線的距離,再由輔助角公式和三角函數(shù)的性質(zhì)得到的取值范圍即可.
(Ⅰ)由題意,等邊的頂點都在上,
且點,,按照逆時針方向排列,點的極坐標(biāo)為,
所以點的極坐標(biāo),點的極坐標(biāo),
由,
可得點的直角坐標(biāo)為,
點的直角坐標(biāo)為,
點的直角坐標(biāo)為.
(Ⅱ)由(Ⅰ)知,,,
所以得的直線方程為:,
設(shè)點,
則點到直線的距離為
,
因為,所以,
所以,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)討論的單調(diào)性;
(2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點.如果函數(shù)存在不動點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】疫情爆發(fā)以來,相關(guān)疫苗企業(yè)發(fā)揮專業(yè)優(yōu)勢與技術(shù)優(yōu)勢爭分奪秒開展疫苗研發(fā).為測試疫苗的有效性(若疫苗有效的概率小于90%,則認(rèn)為測試沒有通過),選定2000個樣本分成三組,測試結(jié)果如“下表:
組 | 組 | 組 | |
疫苗有效 | 673 | ||
疫苗無效 | 77 | 90 |
已知在全體樣本中隨機抽取1個,抽到組疫苗有效的概率是0.33.
(1)求,的值;
(2)現(xiàn)用分層抽樣的方法在全體樣本中抽取360個測試結(jié)果,求組應(yīng)抽取多少個?
(3)已知,,求疫苗能通過測試的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的離心率為,過其右焦點與長軸垂直的直線與橢圓在第一象限交于點,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左、右頂點分別為,,點是橢圓上的動點,且點與點,不重合,直線,與直線分別交于點,,求證:以線段為直徑的圓過定點,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè),是方程的兩個不等實數(shù)根,記().下列兩個命題( )
①數(shù)列的任意一項都是正整數(shù);
②數(shù)列存在某一項是5的倍數(shù).
A.①正確,②錯誤B.①錯誤,②正確
C.①②都正確D.①②都錯誤
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中提到了一種名為“芻甍[chúméng]”的五面體(如圖),四邊形為矩形,棱.若此幾何體中,,和都是邊長為的等邊三角形,則此幾何體的體積為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下命題:
(1)已知回歸直線方程為,樣本點的中心為,則;
(2)已知,與的夾角為鈍角,則是的充要條件;
(3)函數(shù)圖象關(guān)于點對稱且在上單調(diào)遞增;
(4)命題“存在”的否定是“對于任意”;
(5)設(shè)函數(shù),若函數(shù)恰有三個零點,則實數(shù)m的取值范圍為.
其中不正確的命題序號為______________ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com