直線與拋物線交于兩點(diǎn),若,則弦的中點(diǎn)到直線的距離等于(   )

 A.           B.            C.       D.

 

【答案】

C

【解析】試題分析:直線恒過定點(diǎn),恰為拋物線的焦點(diǎn),即直線過拋物線的焦點(diǎn),所以的長(zhǎng)度也為兩點(diǎn)到拋物線的準(zhǔn)線的距離的和,所以弦的中點(diǎn)到直線的距離等于2,所以到直線的距離等于

考點(diǎn):本小題主要考查含參數(shù)的直線過定點(diǎn)問題、直線與拋物線相交時(shí)的弦長(zhǎng)問題和拋物線上點(diǎn)的性質(zhì),考查學(xué)生轉(zhuǎn)化問題的能力和數(shù)形結(jié)合思想的應(yīng)用.

點(diǎn)評(píng):拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這個(gè)性質(zhì)在解題時(shí)經(jīng)常用到.另外過拋物線焦點(diǎn)的弦長(zhǎng)公式也經(jīng)常用到.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=2x的焦點(diǎn)作一條直線與拋物線交于兩點(diǎn),它們的橫坐標(biāo)之和等于2,則這樣的直線(  )
A、有且只有一條B、有且只有兩條C、有且只有三條D、有且只有四條

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線的焦點(diǎn)F在y軸上,拋物線上一點(diǎn)A(a,4)到準(zhǔn)線的距離是5,過點(diǎn)F的直線與拋物線交于M,N兩點(diǎn),過M,N兩點(diǎn)分別作拋物線的切線,這兩條切線的交點(diǎn)為T.
(I)求拋物線的標(biāo)準(zhǔn)方程;
(II)求
FT
MN
的值;
(III)求證:|
FT
|是|
MF
|和|
NF
|
的等比中項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知直線l的斜率為k且過點(diǎn)Q(-3,0),拋物線C:y2=16x,直線與拋物線l有兩個(gè)不同的交點(diǎn),F(xiàn)是拋物線的焦點(diǎn),點(diǎn)A(4,2)為拋物線內(nèi)一定點(diǎn),點(diǎn)P為拋物線上一動(dòng)點(diǎn).
(1)求|PA|+|PF|的最小值;
(2)求k的取值范圍;
(3)若O為坐標(biāo)原點(diǎn),問是否存在點(diǎn)M,使過點(diǎn)M的動(dòng)直線與拋物線交于B,C兩點(diǎn),且以BC為直徑的圓恰過坐標(biāo)原點(diǎn),若存在,求出動(dòng)點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出4個(gè)命題:
(1)設(shè)橢圓長(zhǎng)軸長(zhǎng)度為2a(a>0),橢圓上的一點(diǎn)P到一個(gè)焦點(diǎn)的距離是
2
3
a
,P到一條準(zhǔn)線的距離是
8
3
a
,則此橢圓的離心率為
1
4

(2)若橢圓
x2
a2
+
y2
b2
=1
(a≠b,且a,b為正的常數(shù))的準(zhǔn)線上任意一點(diǎn)到兩焦點(diǎn)的距離分別為d1,d2,則|d12-d22|為定值.
(3)如果平面內(nèi)動(dòng)點(diǎn)M到定直線l的距離與M到定點(diǎn)F的距離之比大于1,那么動(dòng)點(diǎn)M的軌跡是雙曲線.
(4)過拋物線焦點(diǎn)F的直線與拋物線交于A、B兩點(diǎn),若A、B在拋物線準(zhǔn)線上的射影分別為A1、B1,則FA1⊥FB1
其中正確命題的序號(hào)依次是
(2)(4)
(2)(4)
.(把你認(rèn)為正確的命題序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三第一次模擬考試?yán)砜茢?shù)學(xué)卷 題型:解答題

(本小題滿分14分)

直線是線段的垂直平分線.設(shè)橢圓E的方程為

 

(1)當(dāng)上移動(dòng)時(shí),求直線斜率的取值范圍;

(2)已知直線與拋物線交于A、B兩個(gè)不同點(diǎn), 與橢圓交于P、Q兩個(gè)不同點(diǎn),設(shè)AB中點(diǎn)為,OP中點(diǎn)為,若,求橢圓離心率的范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案