(本題滿分12分)如圖所示,空間直角坐標系中,直三棱柱,N、M分別是、的中點

(1)試畫出該直三棱柱的側視圖。并標注出相應線段長度值
(2)求證:直線AN與BM相交,并求二面角的余弦值
 
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
三棱柱ABC—A1B1C1中,CC1⊥平面ABC,△ABC是邊長為2的等邊三角形,D為AB邊中點,且CC1="2AB."
(1)求證:平面C1CD⊥平面ABC;
(2)求證:AC1∥平面CDB1;
(3)求三棱錐D—CBB1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知△ABC是正三角形,EA、CD都垂直于平面ABC,且EA=AB=2DC,F是BE的中點,求證:(1)  FD∥平面ABC;     (2)FD⊥平面ABE;      (3)  AF⊥平面EDB.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分13分)
如圖,直三棱柱A1B1C1-ABC中,C1C=CB=CA=2,ACCBD、E分別為棱C1C、B1C1的中點.
(Ⅰ)求A1B與平面A1C1CA所成角的大;
(Ⅱ)求二面角B-A1D-A的大。
(Ⅲ)試在線段AC上確定一點F,使得EF⊥平面A1BD

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題


查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

A、B是半徑為R的球O的球面上兩點,它們的球面距離為,則過A、B的平面中,與球心的最大距離是      

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知平面,在內有4個點,在內有6個點,以這些點為頂點,最多可作     個三棱錐,在這些三棱錐中最多可以有     個不同的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知是兩個不同平面,、是兩不同直線,下列命題中的假命題是 (   )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

9.由“若直角三角形兩直角邊的長分別為,將其補成一個矩形,則根據(jù)矩形的對角線長可求得該直角三角形外接圓的半徑為”. 對于“若三棱錐三條側棱兩兩垂直,側棱長分別為”,類比上述處理方法,可得該三棱錐的外接球半徑為=    ▲   .

查看答案和解析>>

同步練習冊答案