【題目】設(shè)函數(shù).
(1)若函數(shù)在上不單調(diào),求實(shí)數(shù)a的取值范圍;
(2)求函數(shù)在的最小值.
【答案】(1)
(2).
【解析】
(1)分與兩種情況將寫成分段函數(shù)的形式,再根據(jù)對(duì)稱軸與區(qū)間的位置關(guān)系討論即可
(2)先分 ,兩種情況討論,再根據(jù)兩個(gè)二次函數(shù)的對(duì)稱軸再對(duì)進(jìn)行討論分析最小值的取值情況.
(1)由化為
則二次函數(shù)對(duì)稱軸為.
對(duì)稱軸為
則當(dāng)時(shí), 若函數(shù)在上不單調(diào)則對(duì)稱軸在之間,
即,因?yàn)?/span>故化簡(jiǎn)得,即
當(dāng)時(shí), 滿足題意.
當(dāng)時(shí), 若函數(shù)在上不單調(diào)則對(duì)稱軸在之間,
即,因?yàn)?/span>故
綜上所述,
(2) 由(1) ,
對(duì)稱軸為.
對(duì)稱軸為
1.當(dāng)時(shí),
當(dāng),即時(shí),在上單調(diào)遞增,
此時(shí)
當(dāng)即時(shí), 在的對(duì)稱軸處取得最小值,
此時(shí)
2.當(dāng)時(shí),
當(dāng),即時(shí),在上單調(diào)遞增,
此時(shí)
當(dāng),即時(shí), 在的對(duì)稱軸處取得最小值,
此時(shí)
綜上所述,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高三有500名學(xué)生,在一次考試的英語(yǔ)成績(jī)服從正態(tài)分布,數(shù)學(xué)成績(jī)的頻率分布直方圖如下:
(Ⅰ)如果成績(jī)大于135的為特別優(yōu)秀,則本次考試英語(yǔ)、數(shù)學(xué)特別優(yōu)秀的大約各多少人?
(Ⅱ)試問(wèn)本次考試英語(yǔ)和數(shù)學(xué)的成績(jī)哪個(gè)較高,并說(shuō)明理由.
(Ⅲ)如果英語(yǔ)和數(shù)學(xué)兩科都特別優(yōu)秀的共有6人,從(Ⅰ)中的這些同學(xué)中隨機(jī)抽取3人,設(shè)三人中兩科都特別優(yōu)秀的有人,求的分布列和數(shù)學(xué)期望。
參考公式及數(shù)據(jù):
若,則,
,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,為曲線上的動(dòng)點(diǎn),與軸、軸的正半軸分別交于,兩點(diǎn).
(1)求線段中點(diǎn)的軌跡的參數(shù)方程;
(2)若是(1)中點(diǎn)的軌跡上的動(dòng)點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形是正方形, 平面, // , , , 為的中點(diǎn).
(1)求證: ;
(2)求證: //平面;
(3)求二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)和都是定義在集合上的函數(shù),對(duì)于任意的,都有成立,稱函數(shù)與在上互為“互換函數(shù)”.
(1)函數(shù)與在上互為“互換函數(shù)”,求集合;
(2)若函數(shù) (且)與在集合上互為“互換函數(shù)”,求證:;
(3)函數(shù)與在集合且上互為“互換函數(shù)”,當(dāng)時(shí),,且在上是偶函數(shù),求函數(shù)在集合上的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在△中,,分別為,的中點(diǎn),為的中點(diǎn),,.將△沿折起到△的位置,使得平面平面,如圖2.
(Ⅰ)求證:;
(Ⅱ)求直線和平面所成角的正弦值;
(Ⅲ)線段上是否存在點(diǎn),使得直線和所成角的余弦值為?若存在,求出的值;若不存在,說(shuō)明理由.
圖1 圖2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)生產(chǎn)、兩種產(chǎn)品,生產(chǎn)每產(chǎn)品所需的勞動(dòng)力和煤、電消耗如下表:
產(chǎn)品品種 | 勞動(dòng)力(個(gè)) | 煤 | 電 |
已知生產(chǎn)產(chǎn)品的利潤(rùn)是萬(wàn)元,生產(chǎn)產(chǎn)品的利潤(rùn)是萬(wàn)元.現(xiàn)因條件限制,企業(yè)僅有勞動(dòng)力個(gè),煤,并且供電局只能供電,則企業(yè)生產(chǎn)、兩種產(chǎn)品各多少噸,才能獲得最大利潤(rùn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a,b,c分別是的三條邊,且.我們知道,如果為直角三角形,那么(勾股定理).反過(guò)來(lái),如果,那么為直角三角形(勾股定理的逆定理).由此可知,為直角三角形的充要條件是.請(qǐng)利用邊長(zhǎng)a,b,c分別給出為銳角三角形和鈍角三角形的一個(gè)充要條件,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=2sin2(x+)-2cos(x-)-5a+2.
(1)設(shè)t=sinx+cosx,將函數(shù)f(x)表示為關(guān)于t的函數(shù)g(t),求g(t)的解析式;
(2)對(duì)任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com