某校高一年級60名學生參加數(shù)學競賽,成績?nèi)吭?0分至100分之間,現(xiàn)將成績分成以下6段:,據(jù)此繪制了如圖所示的頻率分布直方圖.

(1)求成績在區(qū)間的頻率;
(2)從成績大于等于80分的學生中隨機選3名學生,其中成績在[90,100]內(nèi)的學生人數(shù)為ξ,求ξ的分布列與均值.

(1);(2)分布列詳見解析,.

解析試題分析:本題主要考查頻率分步直方圖和離散型隨機變量的分布列和數(shù)學期望等數(shù)學知識,考查學生的讀圖能力、分析問題和解決問題的能力、計算能力.第一問,利用頻率分布直方圖可知,所有頻率之和為1,所有可以求出成績在的頻率;第二問,通過頻率分布直方圖分別求出內(nèi)的學生人數(shù),先列出的可能取值,再分別求出每一種情況下的概率列出分布列,利用求數(shù)學期望.
試題解析:(1)因為各組的頻率之和為1,所以成績在區(qū)間的頻率為
,             3分
(2)由已知和(1)的結(jié)果可知成績在區(qū)間內(nèi)的學生有人,
成績在區(qū)間內(nèi)的學生有人,       4 分
依題意,ξ可能取的值為0,1,2,3                       5 分

所以ξ的分布列為

ξ
0
1
2
3
P




 
10分
則均值Eξ=        12分
考點:1.頻率分布直方圖;2.離散型隨機變量的分布列和數(shù)學期望.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

某種產(chǎn)品的廣告費支出x與銷售額(單位:百萬元)之間有如下對應數(shù)據(jù):

x
2
4
5
6
8
y
30
40
50
60
70
 
(1)請畫出上表數(shù)據(jù)的散點圖.
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程.
(3)經(jīng)計算,相關指數(shù),你可得到什么結(jié)論?
(參考數(shù)值:2×30+4×40+5×50+6×60+8×70==1390)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某種水果的單個質(zhì)量在500g以上視為特等品.隨機抽取1000個該水果,結(jié)果有50個特等品.將這50個水果的質(zhì)量數(shù)據(jù)分組,得到下邊的頻率分布表.

(1)估計該水果的質(zhì)量不少于560g的概率;
(2)若在某批水果的檢測中,發(fā)現(xiàn)有15個特等品,據(jù)此估計該批水果中沒有達到特等品的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某市為“市中學生知識競賽”進行選拔性測試,且規(guī)定:成績大于或等于90分的有參賽資格,90分以下(不包括90分)的被淘汰.若有500人參加測試,學生成績的頻率分布直方圖如圖.

(1)求獲得參賽資格的人數(shù);
(2)根據(jù)頻率直方圖,估算這500名學生測試的平均成績;
(3)若知識競賽分初賽和復賽,在初賽中每人最多有5次選題答題的機會,累計答對3題或答錯3題即終止,答對3題者方可參加復賽.已知參賽者甲答對每一個問題的概率都相同,并且相互之間沒有影響.已知他連續(xù)兩次答錯的概率為,求甲在初賽中答題個數(shù)的分布列及數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

一個車間為了規(guī)定工時定額.需要確定加工零件所花費的時間,為此進行了10次試驗.測得的數(shù)據(jù)如下:

零件數(shù)x/個
10
20
30
40
50
60
70
80
90
100
加工時間y/分
62
68
75
81
89
95
102
108
115
122
(1)y與x是否具有線性相關關系?
(2)如果y與x具有線性相關關系,求回歸直線方程;
(3)根據(jù)求出的回歸直線方程,預測加工200個零件所用的時間為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某地區(qū)有小學21所,中學14所,大學7所,現(xiàn)采用分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調(diào)查.
(1)求應從小學、中學、大學中分別抽取的學校數(shù)目;
(2)若從抽取的6所學校中隨機抽取2所學校做進一步數(shù)據(jù)分析,
①列出所有可能的抽取結(jié)果;
②求抽取的2所學校均為小學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某班主任對全班50名學生學習積極性和對待班級工作的態(tài)度進行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:

 
積極參加班級工作
不太主動參加班級工作
合計
學習積極性高
18
7
25
學習積極性一般
6
19
25
合計
24
26
50
(1)如果隨機抽查這個班的一名學生,那么抽到積極參加班級工作的學生的概率是多少?抽到不太主動參加班級工作且學習積極性一般的學生的概率是多少?
(2)試運用獨立性檢驗的思想方法點撥:學生的學習積極性與對待班級工作的態(tài)度是否有關系?并說明理由.(參考下表)
P(K2≥k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某單位N名員工參加“社區(qū)低碳你我他”活動,他們的年齡在25歲至50歲之間。按年齡分組:第1組,第2組,第3組,第4組,第5組,由統(tǒng)計的數(shù)據(jù)得到的頻率分布直方圖如圖所示,下表是年齡的頻率分布表。

區(qū)間





人數(shù)

a
b
 
 
(1)求正整數(shù)a,b,N的值;
(2)現(xiàn)要從年齡較小的第1,2,3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組中抽取的人數(shù)分別是多少?
(3)在(2)的條件下,從這6人中隨機抽取2人參加社區(qū)宣傳交流活動,求恰有1 人在第3組的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某車間共有12名工人,隨機抽取6名,他們某日加工零件個數(shù)的莖葉圖如圖所示,其中莖為十位數(shù),葉為個位數(shù).

(1)根據(jù)莖葉圖計算樣本均值.
(2)日加工零件個數(shù)大于樣本均值的工人為優(yōu)秀工人.根據(jù)莖葉圖推斷該車間12名工人中有幾名優(yōu)秀工人?
(3)從該車間12名工人中,任取2人,求恰有1名優(yōu)秀工人的概率.

查看答案和解析>>

同步練習冊答案