【題目】已知直線 ( 為參數(shù)), .
(1)當(dāng) 時(shí),求 與 的交點(diǎn)坐標(biāo);
(2)以坐標(biāo)原點(diǎn) 為圓心的圓與 相切,切點(diǎn)為 , 為 的中點(diǎn),當(dāng) 變化時(shí),求 點(diǎn)的軌跡的參數(shù)方程,并指出它是什么曲線.
【答案】
(1)解:當(dāng) 時(shí), 的普通方程為 , 的普通方程為
聯(lián)立方程組
解得 與 的交點(diǎn)為(1,0),
(2)解: 的普通方程為
A點(diǎn)坐標(biāo)為 .∴當(dāng) 變化時(shí),P點(diǎn)軌跡的參數(shù)方程為
( 為參數(shù))P點(diǎn)軌跡的普通方程為
故P點(diǎn)軌跡是圓心為 ,半徑為 的圓.
【解析】本題主要考查了直線的參數(shù)方程,解決問題的關(guān)鍵是掌握參數(shù)方程與普通方程相互轉(zhuǎn)化,極坐標(biāo)方程與直角坐標(biāo)系方程相互轉(zhuǎn)化
【考點(diǎn)精析】本題主要考查了直線的參數(shù)方程和圓的參數(shù)方程的相關(guān)知識(shí)點(diǎn),需要掌握經(jīng)過點(diǎn),傾斜角為的直線的參數(shù)方程可表示為(為參數(shù));圓的參數(shù)方程可表示為才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,直線傾斜角是且過拋物線的焦點(diǎn),直線被拋物線截得的線段長(zhǎng)是16,雙曲線: 的一個(gè)焦點(diǎn)在拋物線的準(zhǔn)線上,則直線與軸的交點(diǎn)到雙曲線的一條漸近線的距離是( )
A. 2 B. C. D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中,且。
(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),若存在極大值,且對(duì)于的一切可能取值, 的極大值均小于0,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次國(guó)際學(xué)術(shù)會(huì)議上,來自四個(gè)國(guó)家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國(guó)人,還會(huì)說英語.
乙是法國(guó)人,還會(huì)說日語.
丙是英國(guó)人,還會(huì)說法語.
丁是日本人,還會(huì)說漢語.
戊是法國(guó)人,還會(huì)說德語.
則這五位代表的座位順序應(yīng)為( )
A. 甲丙丁戊乙 B. 甲丁丙乙戊
C. 甲乙丙丁戊 D. 甲丙戊乙丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)f(x)=ax2+bx+c(a,b∈R,a≠0)滿足條件:
①當(dāng)x∈R時(shí),f(x)的圖象關(guān)于直線x=﹣1對(duì)稱;②f(1)=1;③f(x)在R上的最小值為0;
(1)求函數(shù)f(x)的解析式;
(2)求最大的m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)f(x)=(m2﹣m﹣1)x﹣5m﹣3在(0,+∞)上是增函數(shù),又g(x)=loga (a>1).
(1)求函數(shù)g(x)的解析式;
(2)當(dāng)x∈(t,a)時(shí),g(x)的值域?yàn)椋?,+∞),試求a與t的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線C的參數(shù)方程為 ( 為參數(shù)),以直角坐標(biāo)系原點(diǎn)為極點(diǎn),Ox軸正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的極坐標(biāo)方程;
(2)若直線l的極坐標(biāo)方程為 ,求直線l被曲線C截得的弦長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】李莊村電費(fèi)收取有以下兩種方案供農(nóng)戶選擇:
方案一:每戶每月收管理費(fèi)2元,月用電不超過30度每度0.5元,超過30度時(shí),超過部分按每度0.6元.
方案二:不收管理費(fèi),每度0.58元.
(1)求方案一收費(fèi)L(x)元與用電量x(度)間的函數(shù)關(guān)系;
(2)李剛家九月份按方案一交費(fèi)35元,問李剛家該月用電多少度?
(3)李剛家月用電量在什么范圍時(shí),選擇方案一比選擇方案二更好?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)全集U=R,集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2}.
(1)求U(A∩B);
(2)若集合C={x|2x+a>0},滿足B∪C=C,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com