已知函數(shù)f(x)=alnx-ax-3(a∈R,a≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求證:
【答案】分析:(I)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間的步驟是①求導(dǎo)函數(shù)f′(x);②解f′(x)>0(或<0);③得到函數(shù)的增區(qū)間(或減區(qū)間),在求單調(diào)區(qū)間時(shí)要注意函數(shù)的定義域以及對(duì)參數(shù)a的討論情況;
(II)判斷l(xiāng)nx<x-1對(duì)一切x∈(1,+∞)成立,進(jìn)而可得證(n≥2,n∈N*),即可證得結(jié)論.
解答:解:(Ⅰ)由于,…(2分)
①當(dāng)a>0時(shí),易知,當(dāng)0<x<1時(shí),f'(x)>0,當(dāng)x>1時(shí),f'(x)<0;
所以f(x)的單調(diào)遞增區(qū)間為(0,1),遞減區(qū)間為(1,+∞);…(4分)
②當(dāng)a<0時(shí),同理可知f(x)的單調(diào)遞減區(qū)間為(0,1),遞增區(qū)間為(1,+∞);…(6分)
(Ⅱ)要證成立;
只須證(n≥2,n∈N*,)
即證lnn<n-1(n≥2,n∈N*,)
下面證明此式.
證明:令a=1此時(shí)f(x)=lnx-x-3,所以f(1)=-4,
由(I)知f(x)=lnx-x-3在(1,+∞)上單調(diào)遞減,
∴當(dāng)x∈[1,+∞)時(shí)f(x)<f(1),即lnx-x+1<0,
∴l(xiāng)nx<x-1對(duì)一切x∈(1,+∞)成立,(12分)
∵n≥2,n∈N*,則有0<lnn<n-1,
故結(jié)論成立.
點(diǎn)評(píng):本題考查利用函數(shù)的導(dǎo)數(shù)來求函數(shù)的單調(diào)區(qū)間,考查函數(shù)單調(diào)性的性質(zhì),構(gòu)造函數(shù)求解證明不等式問題,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時(shí),求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案