給出下面類比推理命題(其中Q為有理數(shù)集,R為實數(shù)集,C為復(fù)數(shù)集):
①“若a、b∈R,則a-b=0⇒a=b”類比推出“若a、b∈C,則a-b=0⇒a=b”;
②“若a、b、c、d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”類比推出;“若a、b、c、d∈Q,
則a+b=c+d⇒a=c,b=d”;
③“若a、b∈R,則a-b>0⇒a>b”類比推出“若a、b∈C,則a-b>0⇒a>b”;
④“若x∈R,則|x|<1⇒-1<x<1”類比推出“若z∈C,則|z|<1⇒-1<z<1”.
其中類比結(jié)論正確的命題序號為________(把你認(rèn)為正確的命題序號都填上).
①②

試題分析:根據(jù)題意,由于類比推理的概念可知,
對于①“若a、b∈R,則a-b=0⇒a=b”類比推出“若a、b∈C,則a-b=0⇒a=b”;成立。
對于②“若a、b、c、d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”類比推出;“若a、b、c、d∈Q,
則a+b=c+d⇒a=c,b=d”;成立。
對于③“若a、b∈R,則a-b>0⇒a>b”類比推出“若a、b∈C,則a-b>0⇒a>b”;當(dāng)a=2+3i,b=1+3i不成立,故錯誤。
對于④“若x∈R,則|x|<1⇒-1<x<1”類比推出“若z∈C,則|z|<1⇒-1<z<1”.比如z=不成立故答案為①②
點評:主要是考查了命題的真假的判定,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

觀察下列式子:
,…,根據(jù)以上
式子可以猜想:_________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

數(shù)列的項是由1或2構(gòu)成,且首項為1,在第個1和第個1之間有個2,即數(shù)列為:1,2,1,2,2,2,1,2,2,2,2,2,1,…,記數(shù)列的前項和為,則  ;  

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用反證法證明命題“如果你,那么”時,假設(shè)的內(nèi)容是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

表示不超過的最大整數(shù).

那么        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(推理)三段論:“①只有船準(zhǔn)時起航,才能準(zhǔn)時到達(dá)目的港;②這艘船是準(zhǔn)時到達(dá)目的港;③所以這艘船是準(zhǔn)時起航的”中的“小前提”是(   )
A.①B.②C.①②D.③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

半徑為r的圓的面積,周長,若將看作(0,+∞)上的變量,則 ① , ①式可用語言敘述為:圓的面積函數(shù)的導(dǎo)數(shù)等于圓的周長函數(shù)。
對于半徑為R的球,若將R看作(0,+)上的變量,請你寫出類似于①的式子:_______________________________________②
②式可用語言敘述為___________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下面幾種推理是類比推理的是                          (   )
A.兩條直線平行,同旁內(nèi)角互補(bǔ),如果是兩條平行直線的同旁內(nèi)角,則
B.由平面向量的運算性質(zhì),推測空間向量的運算性質(zhì)
C.某校高二級有20個班,1班有51位團(tuán)員,2班有53位團(tuán)員,3班有52位團(tuán)員,由此可以推測各班都超過50位團(tuán)員,;
D.一切偶數(shù)都能被2整除,是偶數(shù),所以能被2整除

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列表述:①綜合法是執(zhí)因?qū)Чǎ虎诰C合法是順推法;③分析法是執(zhí)果索因法;④分析法是間接證法;⑤反證法是逆推法。正確的語句有是__________(填序號)。

查看答案和解析>>

同步練習(xí)冊答案