Processing math: 78%
7.已知雙曲線C的方程為x24-y25=1,其左、右焦點(diǎn)分別是F1、F2,已知點(diǎn)M坐標(biāo)為(2,1),雙曲線C上點(diǎn)P(x0,y0 ) (x0>0,y0>0)滿足PF1MF1PF1=F2F1MF1F2F1,則SPMF1-SPMF2=( �。�
A.-1B.1C.2D.4

分析 利用 PF1MF1PF1=F2F1MF1F2F1,得出∠MF1P=∠MF1F2,進(jìn)而求出直線PF1的方程為y=512(x+3),與雙曲線聯(lián)立可得P(3,52),由此即可求出SPMF1-SPMF2的值.

解答 解:∵PF1MF1PF1=F2F1MF1F2F1,∴|MF1|•cos∠MF1P=|MF1|•cos∠MF1F2,∴∠MF1P=∠MF1F2
∵F1 (-3,0)、F2(3,0),點(diǎn)M(2,1),∴|MF1|=26,|MF2|=2,|F1F2|=2c=6,
故由余弦定理可得 cos∠MF1F2=MF12+F1F22MF222|MF1||F1F2|=526,∴cos∠PF1F2=2cos2∠MF1F2-1=1213,
∴sin∠PF1F2=1cos2PF1F2=512,∴tan∠PF1F2=sinPF1F2cosPF1F2=512,
∴直線PF1的方程為y=512(x+3).
把它與雙曲線聯(lián)立可得P(3,52),∴|PF1|=132,
∴sin∠MF1F2=126,∴S△PMF1=1213226126=134,
∵SPMF2=12521=54
∴SPMF1-SPMF2=134-54=2.

點(diǎn)評(píng) 本題考查向量知識(shí)的運(yùn)用,考查三角形面積的計(jì)算,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知2sinθ=1+cosθ,則tanθ=( �。�
A.43或0B.43或0C.43D.43

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知向量a=(sinθ,1),=(2cosθ,-1)且θ∈(0,π),若a,則θ=\frac{π}{4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在某次綜合素質(zhì)測(cè)試中,共設(shè)有40個(gè)考室,每個(gè)考室30名考生.在考試結(jié)束后,為調(diào)查其測(cè)試前的培訓(xùn)輔導(dǎo)情況與測(cè)試成績(jī)的相關(guān)性,抽取每個(gè)考室中座位號(hào)為05的考生,得到40名考生,統(tǒng)計(jì)他們的成績(jī),得到如圖所示的頻率分布直方圖:
(1)在這個(gè)調(diào)查采樣中,用到的是什么抽樣方法?
(2)求分?jǐn)?shù)在70~85之間的頻率是多少?
(3)求出這40名考生成績(jī)的眾數(shù)、中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知點(diǎn)A(0,-2),B(0,4),動(dòng)點(diǎn)P(x,y)滿足\overrightarrow{PA}\overrightarrow{PB}=y2-8.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)(1)中所求軌跡與直線y=x+2交于C,D兩點(diǎn),設(shè)C( x1,y1),D( x2,y2),計(jì)算 x1 x2,y1 y2的值;
(3)求證:OC⊥OD(O為坐標(biāo)原點(diǎn)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.圓{(x+\frac{1}{2})^2}+{(y+1)^2}=\frac{81}{16}與圓{(x-sinθ)^2}+{(y-1)^2}=\frac{1}{16}(θ為銳角)的位置關(guān)系是( �。�
A.相離B.外切C.內(nèi)切D.相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若動(dòng)直線x=a與函數(shù)f(x)=sinx和g(x)=2cos2x-1的圖象分別交于M,N兩點(diǎn),則|MN|的最大值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|<\frac{π}{2})的最小正周期為\frac{2π}{3},最小值為-2,圖象過(guò)(\frac{5π}{9},0),求該函數(shù)的解析式并求其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)f(x)=\frac{x^2}{{1+{x^2}}},則f(\frac{1}{2016})+f(\frac{1}{2015})+…+f(1)+f(2)+…+f(2016)=( �。�
A.4031B.\frac{4031}{2}C.4032D.2016

查看答案和解析>>

同步練習(xí)冊(cè)答案