(本小題共13分)
已知函數(shù)。
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)若對于任意的,都有≤,求的取值范圍。
(Ⅰ),令,當(dāng)時(shí),的情況如下:
+ |
0 |
0 |
+ |
||
|
0 |
|
所以,的單調(diào)遞增區(qū)間是和:單調(diào)遞減區(qū)間是,當(dāng)時(shí),與的情況如下:
0 |
+ |
0 |
|||
0 |
|
|
所以,的單調(diào)遞減區(qū)間是和:單調(diào)遞減區(qū)間是。
(Ⅱ)當(dāng)時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052406183817183483/SYS201205240620256562244767_DA.files/image020.png">,所以不會有當(dāng)時(shí),由(Ⅰ)知在上的最大值是所以等價(jià)于, 解得故當(dāng)時(shí),的取值范圍是[,0]。
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(本小題共13分)
已知函數(shù)
(I)若x=1為的極值點(diǎn),求a的值;
(II)若的圖象在點(diǎn)(1,)處的切線方程為,
(i)求在區(qū)間[-2,4]上的最大值;
(ii)求函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆北京市豐臺區(qū)高三年級第二學(xué)期統(tǒng)一練習(xí)理科數(shù)學(xué) 題型:解答題
(本小題共13分)
已知函數(shù).
(Ⅰ)若在處取得極值,求a的值;
(Ⅱ)求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年北京市高三壓軸文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題共13分)
已知向量,設(shè)函數(shù).
(Ⅰ)求函數(shù)在上的單調(diào)遞增區(qū)間;
(Ⅱ)在中,,,分別是角,,的對邊,為銳角,若,,的面積為,求邊的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市豐臺區(qū)高三下學(xué)期統(tǒng)一練習(xí)數(shù)學(xué)理卷 題型:解答題
(本小題共13分)
某商場在店慶日進(jìn)行抽獎促銷活動,當(dāng)日在該店消費(fèi)的顧客可參加抽獎.抽獎箱中有大小完全相同的4個小球,分別標(biāo)有字“生”“意”“興”“隆”.顧客從中任意取出1個球,記下上面的字后放回箱中,再從中任取1個球,重復(fù)以上操作,最多取4次,并規(guī)定若取出“隆”字球,則停止取球.獲獎規(guī)則如下:依次取到標(biāo)有“生”“意”“興”“隆”字的球?yàn)橐坏泉劊徊环猪樞蛉〉綐?biāo)有“生”“意”“興”“隆”字的球,為二等獎;取到的4個球中有標(biāo)有“生”“意”“興”三個字的球?yàn)槿泉劊?/p>
(Ⅰ)求分別獲得一、二、三等獎的概率;
(Ⅱ)設(shè)摸球次數(shù)為,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:北京市宣武區(qū)2010年高三第一次質(zhì)量檢測數(shù)學(xué)(文)試題 題型:解答題
(本小題共13分)
已知函數(shù)
(I)當(dāng)a=1時(shí),求函數(shù)的最小正周期及圖象的對稱軸方程式;
(II)當(dāng)a=2時(shí),在的條件下,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com