某房屋開發(fā)商出售一套價值50萬元的住宅,可以首付5萬元,以后每過一年付5萬,9年后付清;也可以一次付清并優(yōu)惠x%,問開發(fā)商怎么樣確定優(yōu)惠率可以鼓勵購房者一次付清.(如果今后的九年內(nèi)銀行一年期定期存款稅后利率為2%,按復(fù)利計算,計算過程中可以參考以下數(shù)據(jù):1.029=1.19,1.0210=1.2)
考點:函數(shù)模型的選擇與應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意可得50×1.029×(1-x%)<5(1.029+1.028+…+1.02+1),利用等比數(shù)列求和并計算可得結(jié)論.
解答: 解:由題意得
50×1.029×(1-x%)<5(1.029+1.028+…+1.02+1)
即10×1.029×(1-x%)<
1-1.0210
1-1.02

1-x%<
1.0210-1
10•1.029•0.02
=
1.2-1
10+1.19•0.02
=
1
1.19
=0.843
∴x%>15.97%.
答:一次付款的優(yōu)惠率應(yīng)不低于16%.
點評:本題考查利率的計算方法及等比數(shù)列求和公式等知識,考查學(xué)生的理解能力及運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

AB是過橢圓
x2
5
+
y2
4
=1
的一個焦點F的弦,若AB的傾斜角為
π
3
,則弦AB的長為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(logax)logax=x,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:若a2-4b2-2a+1≠0,則a≠2b+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
4
-
y2
m
=1的離心率為
7
2
,則m的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試就實數(shù)k的取值,討論|x2-2x-3|=k的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax-a-x(a>0且a≠1).
(Ⅰ)若f(1)>0,試求不等式f(x2+2x)+f(x-4)>0的解集;
(Ⅱ)若f(1)=
3
2
,且g(x)=a2x+a-2x-2mf(x),且g(x)在[1,+∞)上的最小值為-2,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖展示了一個由區(qū)間(0,1)到實數(shù)集R的映射過程:區(qū)間(0,1)中的實數(shù)m對應(yīng)數(shù)軸上的點M,如圖1;將線段AB圍成一個圓,使兩端點A,B恰好重合(點M從點A按逆時針方向運動至點B),如圖2;再將這個圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點A的坐標(biāo)為(0,1),如圖3.圖3中直線AM與x軸交于點N(n,0),則m的象就是n,記作f(m)=n.下列說法中正確命題的序號是
 
.(填出所有正確命題的序號)

①f(
1
4
)=1;     
②f(x)在定義域上單調(diào)遞增;     
③方程f(x)=0的解是x=
1
2
;
④f(x)是奇函數(shù);                             
⑤f(x)的圖象關(guān)于點(
1
2
,0)對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩形BCC1B1所在平面與平面ABB1N垂直,AN∥BB1,AB⊥BB1,且BB1=8,AN=AB=BC=4,
(1)求證:BN⊥平面C1B1N;
(2)設(shè)θ為直線C1N與平面CNB1所成的角,求sinθ;
(3)設(shè)M為AB中點,在BC邊上求一點P,使MP∥平面CNB1,求
BP
PC
的值.

查看答案和解析>>

同步練習(xí)冊答案