設(shè)函數(shù)f(x)=x-aex-1.
(Ⅰ)求函數(shù)f(x)單調(diào)區(qū)間;
(Ⅱ)若f(x)≤0對(duì)x∈R恒成立,求a的取值范圍.
【答案】分析:(I)對(duì)函數(shù)求導(dǎo),使得導(dǎo)函數(shù)大于0,求出自變量的取值范圍,針對(duì)于a的值小于進(jìn)行討論,得到函數(shù)的單調(diào)區(qū)間.
(II)這是一個(gè)恒成立問題,根據(jù)上一問做出的結(jié)果,知道當(dāng)a≤0時(shí),f(x)≤0不恒成立,又當(dāng)a>0時(shí),f(x)在點(diǎn)x=1-lna處取最大值,求出a的范圍.
解答:解:(I)f′(x)=1-aex-1
當(dāng)a≤0時(shí),f′(x)>0,f(x)在R上是增函數(shù);
當(dāng)a>0時(shí),令f′(x)=0得x=1-lna
若x<1-lna,則f′(x)>0,從而f(x)在區(qū)間(-∞,1-lna)上是增函數(shù);
若x>1-lna,,則f′(x)<0,從而f(x)在區(qū)間(1-lna,+∞上是減函數(shù).
(II)由(I)可知:當(dāng)a≤0時(shí),f(x)≤0不恒成立
又當(dāng)a>0時(shí),f(x)在點(diǎn)x=1-lna處取最大值,
且f(1-lna)=1-lna-ae-lna=-lna
令-lna<0得a≥1
故若f(x)≤0對(duì)x∈R恒成立,則a的取值范圍是[1,+∞)
點(diǎn)評(píng):本題考查求函數(shù)的單調(diào)區(qū)間和解決函數(shù)恒成立的問題,解題時(shí)注意函數(shù)的單調(diào)性是解決最值的必經(jīng)途徑,注意數(shù)字的運(yùn)算.