【題目】已知直線l:x+2y﹣4=0與坐標(biāo)軸交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),則經(jīng)過O、A、B三點(diǎn)的圓的標(biāo)準(zhǔn)方程為

【答案】(x﹣2)2+(y﹣1)2=5
【解析】解:根據(jù)題意,直線l:x+2y﹣4=0與坐標(biāo)軸的交點(diǎn)為(4,0)、(0,2),

經(jīng)過O、A、B三點(diǎn)的圓即△OAB的外接圓,

又由△OAB為直角三角形,則其外接圓直徑為|AB|,圓心為AB的中點(diǎn),

則有2r= =2 ,即r= ,

圓心坐標(biāo)為(2,1),

則要求圓的方程為:(x﹣2)2+(y﹣1)2=5;

所以答案是:(x﹣2)2+(y﹣1)2=5.

【考點(diǎn)精析】本題主要考查了圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)A的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) f(x)=ex(ex﹣a)﹣a2x.
(1)討論 f(x)的單調(diào)性;
(2)若f(x)≥0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),求函數(shù)的值域;

(2)如果對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在實(shí)數(shù),使得函數(shù)的最大值為0,若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在遞增等差數(shù)列{an}中,a1=2,a3是a1和a9的等比中項(xiàng). (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若bn= ,Sn為數(shù)列{bn}的前n項(xiàng)和,是否存在實(shí)數(shù)m,使得Sn<m對(duì)于任意的n∈N+恒成立?若存在,請(qǐng)求實(shí)數(shù)m的取值范圍,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對(duì)于數(shù)集,其中, .定義向量集.若對(duì)于任意,存在,使得,則稱具有性質(zhì).例如具有性質(zhì).

(1)若,且具有性質(zhì),求的值;

(2)若具有性質(zhì),求證: ,且當(dāng)時(shí), .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司有30名男職員和20名女職員,公司進(jìn)行了一次全員參與的職業(yè)能力測試,現(xiàn)隨機(jī)詢問了該公司5名男職員和5名女職員在測試中的成績(滿分為30分),可知這5名男職員的測試成績分別為16,24,18,

22,20,5名女職員的測試成績分別為18,23,23,18,23,則下列說法一定正確的是( )

A. 這種抽樣方法是分層抽樣

B. 這種抽樣方法是系統(tǒng)抽樣

C. 這5名男職員的測試成績的方差大于這5名女職員的測試成績的方差

D. 該測試中公司男職員的測試成績的平均數(shù)小于女職員的測試成績的平均數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}中,a1=1,an+1= (n∈N*).
(1)求證:{ + }是等比數(shù)列,并求{an}的通項(xiàng)公式an;
(2)數(shù)列{bn}滿足bn=(3n﹣1) an , 數(shù)列{bn}的前n項(xiàng)和為Tn , 若不等式(﹣1)nλ<Tn+ 對(duì)一切n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校1800名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,抽取其中50個(gè)樣本,將測試結(jié)果按如下方式分成五組:第一組,第二組,,第五組,下圖是按上述分組方法得到的頻率分布直方圖

(1)若成績小于15秒認(rèn)為良好,求該樣本在這次百米測試中成績良好的人數(shù);

(2)請(qǐng)估計(jì)學(xué)校1800名學(xué)生中,成績屬于第四組的人數(shù);

(3)請(qǐng)根據(jù)頻率分布直方圖,求樣本數(shù)據(jù)的眾數(shù)和中位數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (其中)的周期為,且圖象上一個(gè)最低點(diǎn)為

(1)求的解析式;

(2)當(dāng)時(shí),求的最值.

查看答案和解析>>

同步練習(xí)冊(cè)答案