【題目】有以下四個(gè)命題:
(1)2n>2n+1(n≥3);
(2)2+4+6+…+2n=n2+n+2(n≥1);
(3)凸n邊形內(nèi)角和為f(n)=(n-1)π(n≥3);
(4)凸n邊形對角線條數(shù)f(n)= (n≥4).
其中滿足“假設(shè)n=k(k∈N,k≥n0)時(shí)命題成立,則當(dāng)n=k+1時(shí)命題也成立”.但不滿足“當(dāng)n=n0(n0是題中給定的n的初始值)時(shí)命題成立”的命題序號是________.
【答案】(2)(3)
【解析】對于命題(1),,當(dāng)時(shí)有,故當(dāng)等于給定的初始值成立,所以不滿足條件;對于命題(2),,假設(shè)時(shí)命題成立,即,當(dāng)時(shí)有 ,故對時(shí)命題也成立,對于初始值時(shí)有,不成立,所以滿足條件;對于命題(3),凸邊形內(nèi)角和為,假設(shè)時(shí)命題成立,即,當(dāng)時(shí)有,故對時(shí)命題也成立,對于初始值內(nèi)角和為,不成立,故滿足條件;對于命題(4),凸邊形對角線條數(shù), ,假設(shè)時(shí)命題成立,即,當(dāng)時(shí)有,故不滿足條件,
故答案為(2)(3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司即將推車一款新型智能手機(jī),為了更好地對產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購買意愿的問卷調(diào)查,若得分低于60分,說明購買意愿弱;若得分不低于60分,說明購買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購買該款手機(jī)與年齡有關(guān)?
購買意愿強(qiáng) | 購買意愿弱 | 合計(jì) | |
20~40歲 | |||
大于40歲 | |||
合計(jì) |
(2)從購買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人都是年齡大于40歲的概率.
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
(1)證明MN∥平面PAB;
(2)求四面體N﹣BCM的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線關(guān)于軸對稱,頂點(diǎn)在坐標(biāo)原點(diǎn),直線經(jīng)過拋物線的焦點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足,證明直線過軸上一定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的展開式中,前三項(xiàng)系數(shù)的絕對值依次成等差數(shù)列.
(1)求展開式中的常數(shù)項(xiàng);
(2)求展開式中所有整式項(xiàng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)在研究函數(shù)f(x)=(x∈R)時(shí),分別給出下面幾個(gè)結(jié)論:
①等式f(-x)=-f(x)在x∈R時(shí)恒成立;
②函數(shù)f(x)的值域?yàn)椋?/span>-1,1);
③若x1≠x2,則一定有f(x1)≠f(x2);
④方程f(x)=x在R上有三個(gè)根.
其中正確結(jié)論的序號有______.(請將你認(rèn)為正確的結(jié)論的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com