已知等差數(shù)列{an}的公差為1,且a1+a2+a3+…+a99=99,則a3+a6+a9+…+a99的值是多少?
由已知a1+a2+a3+…+a99=99,
有99a1+(1+2+…+98)=99,
99a1+-99=0,
∴99(a1+48)=0.
∴a1=-48,d=1.
∴a3+a6+a9+…+a99=a3+(a3+3)+(a3+6)+…+[a3+(33-1)×3]
=33a3+3(1+2+3+…+32)=33a3+3=33(-46+48)=66.

所謂整體處理,就是指從整體角度思考問(wèn)題,表現(xiàn)在解題時(shí)把一些組合式子或把解題過(guò)程當(dāng)作一個(gè)整體來(lái)考慮的解題方法.可由已知式出發(fā)求得a1,又已知公差d,所以可求得a3,這樣在首項(xiàng)a3,公差d已知的條件下,就可求被求式的值了.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的各項(xiàng)均為正數(shù),觀察下面程序框圖,當(dāng)時(shí),分別


(1)  試求數(shù)列的通項(xiàng);
(2)  若令,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列{an}的前n項(xiàng)和為Sn,且a1=1,nan+1=(n+2)Sn (n∈N*).
(1)求證:數(shù)列為等比數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn;
(3)若數(shù)列{bn}滿足:b1=,=(n∈N*),求數(shù)列{bn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等差數(shù)列{an}的公差為1,且a1+a2+a3+…+a99=99,則a3+a6+a9+…+a99的值是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(湖北黃岡中學(xué)·2010屆高三10月月考)數(shù)列滿足,求整數(shù)部分。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列{an}是等差數(shù)列,a5=6.
(1)當(dāng)a3=3時(shí),請(qǐng)?jiān)跀?shù)列{an}中找一項(xiàng)am,使得a3,a5,am成等比數(shù)列;
(2)當(dāng)a3=2時(shí),若自然數(shù)n1,n2,…,nt,… (t∈N*)滿足5<n1<n2<…<nt<…使得a3,a5,,,…,,…是等比數(shù)列,求數(shù)列{nt}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,an+1=2Sn(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)an;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等差數(shù)列{an}中,已知a1-a4-a8-a12+a15=2,則a3+a13等于(    )
A.-6B.-4C.0D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)數(shù)列{an}、{bn}都是等差數(shù)列,且a1=25,b1=75,a2+b2=100,則a37+b37等于(    )
A.0B.37C.100D.-37

查看答案和解析>>

同步練習(xí)冊(cè)答案