12.已知函數(shù)f(x)=2x2-kx-4在區(qū)間[-2,4]上具有單調(diào)性,則k的取值范圍是( 。
A.[-8,16]B.(-∞,-8]∪[16,+∞)C.(-∞,-8)∪(16,+∞)D.[16,+∞)

分析 函數(shù)f(x)=2x2-kx-4對(duì)稱軸為:x=$\frac{k}{4}$,根據(jù)二次函數(shù)的性質(zhì)可知對(duì)稱軸:x=$\frac{k}{4}$≥4或:x=$\frac{k}{4}$≤-2,解得k即可.

解答 解:函數(shù)f(x)=2x2-kx-4對(duì)稱軸為:x=$\frac{k}{4}$,函數(shù)f(x)=2x2-kx-4 在區(qū)間[-2,4]上具有單調(diào)性,根據(jù)二次函數(shù)的性質(zhì)可知對(duì)稱軸:x=$\frac{k}{4}$≥4或:x=$\frac{k}{4}$≤-2,
解得:k≤-8,或k≥16;
∴k∈(-∞,-8]∪[16,+∞),
故選:B.

點(diǎn)評(píng) 此題主要考查二次函數(shù)的圖象及其性質(zhì),利用對(duì)稱軸在區(qū)間上移動(dòng)得出,f(x)在其區(qū)間上具有單調(diào)性的條件,此題是基礎(chǔ)題

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.命題“若a=0或b=0,則ab=0”的逆否命題是真命題(填真命題或假命題).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列四個(gè)結(jié)論:
①兩條直線和同一個(gè)平面垂直,則這兩條直線平行;
②兩條直線沒有公共點(diǎn),則這兩條直線平行;
③兩條直線都和第三條直線垂直,則這兩條直線平行;
④一條直線和一個(gè)平面內(nèi)任意直線沒有公共點(diǎn),則這條直線和這個(gè)平面平行.
其中正確的個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.給出下列幾種說法:
①若logab•log3a=1,則b=3;
②若a+a-1=3,則a-a-1=$\sqrt{5}$;
③f(x)=log(x+$\sqrt{{x}^{2}+1}$為奇函數(shù);
④f(x)=$\frac{1}{x}$為定義域內(nèi)的減函數(shù);
⑤若函數(shù)y=f(x)是函數(shù)y=ax(a>0且a≠1)的反函數(shù),且f(2)=1,則f(x)=log${\;}_{\frac{1}{2}}$x,其中說法正確的序號(hào)為①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知△ABC中,AB=$\sqrt{3}$,AC=1,∠CAB=30°,則△ABC的面積為( 。
A.$\frac{\sqrt{3}}{2}$B.$\frac{1}{2}$C.$\sqrt{3}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)$f(x)=\sqrt{x+3}+\frac{1}{x-2}$
(1)求函數(shù)f(x)的定義域;     
(2)求f(1)+f(-3)的值;
(3)求f(a+1)的值(其中a>-4且a≠1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.中國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題:“三百七十八里關(guān),初行健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請(qǐng)公仔細(xì)算相還.”其大意為:“有一個(gè)人走了378里路,第一天健步行走,從第二天起因腳痛每天走的路程為前一天的一半,走了6天后到達(dá)目的地.”問此人第4天和第5天共走了( 。
A.60里B.48里C.36里D.24里

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.關(guān)于x、y的方程組$\left\{\begin{array}{l}{2x+my=5}\\{nx-4y=2}\end{array}\right.$的增廣矩陣經(jīng)過變換后得到$(\begin{array}{l}{1}&{0}&{3}\\{0}&{1}&{1}\end{array})$,則$(\begin{array}{l}{m}\\{n}\end{array})$=$(\begin{array}{l}{-1}\\{2}\end{array})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知等比數(shù)列{an}的公比q=2,其前4項(xiàng)和S4=60,則a3等于( 。
A.16B.8C.-16D.-8

查看答案和解析>>

同步練習(xí)冊(cè)答案