【題目】關于曲線的下列說法:(1)關于點對稱;(2)關于直線軸對稱;(3)關于直線對稱;(4)是封閉圖形,面積小于;(5)是封閉圖形,面積大于;(6)不是封閉圖形,無面積可言.其中正確的序號是________.

【答案】1)(2)(5

【解析】

將方程中換成,換成,可判斷(1)(2);將互換可判斷(3);根據(jù)的有界性和取值范圍可判斷(4)(5)(6).

曲線方程

將方程中換成,換成,曲線C的方程都不變,所以(1)(2)正確;

互換,方程變?yōu)?/span>,方程發(fā)生改變,所以(3)錯誤;

在曲線上任取一點,則

,所以是封閉圖形,6)錯誤;

因為,所以因而

,所以在圓的外面

所以封閉圖形的面積大于,所以(4)錯誤,(5)正確.

綜上可知, 正確的序號是(1)(2)(5

故答案為:1)(2)(5

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知平面上兩點M(-5,0)和N(5,0),若直線上存在點P使|PM|-|PN|=6,則稱該直線為單曲型直線,下列直線中是單曲型直線的是( )

y=2; ; .

A.①③ B. ③④ C.②③ D.①②

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)是定義在上的偶函數(shù),且,當時,,則在區(qū)間內(nèi)關于的方程解得個數(shù)為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一布袋中裝有個小球,甲,乙兩個同學輪流且不放回的抓球,每次最少抓一個球,最多抓三個球,規(guī)定:由乙先抓,且誰抓到最后一個球誰贏,那么以下推斷中正確的是( )

A. ,則乙有必贏的策略B. ,則甲有必贏的策略

C. ,則甲有必贏的策略D. ,則乙有必贏的策略

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線過點,過點作直線與拋物線交于不同兩點,過軸的垂線分別與直線、交于點、,其中為坐標原點.

1)求拋物線的方程;

2)寫出拋物線的焦點坐標和準線方程;

3)求證:為線段的中點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的夾角為,,,設,.

1)當時,求的夾角大小;

2)是否存在實數(shù),使得的夾角為鈍角,若存在求出的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)學中有許多形狀優(yōu)美、寓意美好的曲線,曲線C就是其中之一(如圖).給出下列三個結論:

①曲線C恰好經(jīng)過6個整點(即橫、縱坐標均為整數(shù)的點);

②曲線C上任意一點到原點的距離都不超過;

③曲線C所圍成的“心形”區(qū)域的面積小于3.

其中,所有正確結論的序號是

A. B. C. ①②D. ①②③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,為自然對數(shù)的底數(shù).

(1)當時,證明:函數(shù)只有一個零點;

(2)若函數(shù)存在兩個不同的極值點,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的函數(shù)滿足,若恒成立,則實數(shù)的取值范圍為______

查看答案和解析>>

同步練習冊答案