【題目】[選項(xiàng)4-4:坐標(biāo)系與參數(shù)方程]
在直角坐標(biāo)系xOy中,圓C的方程為(x+6)2+y2=25.
(1)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,求C的極坐標(biāo)方程;
(2)直線l的參數(shù)方程是 (t為參數(shù)),l與C交與A,B兩點(diǎn),|AB|= ,求l的斜率.
【答案】
(1)
解:∵圓C的方程為(x+6)2+y2=25,
∴x2+y2+12x+11=0,
∵ρ2=x2+y2,x=ρcosα,y=ρsinα,
∴C的極坐標(biāo)方程為ρ2+12ρcosα+11=0
(2)
∵直線l的參數(shù)方程是 (t為參數(shù)),
∴直線l的一般方程y=tanαx,
∵l與C交與A,B兩點(diǎn),|AB|= ,圓C的圓心C(﹣6,0),半徑r=5,
∴圓心C(﹣6,0)到直線距離d= = ,
解得tan2α= ,∴tanα=± =± .
∴l(xiāng)的斜率k=±
【解析】(1)把圓C的標(biāo)準(zhǔn)方程化為一般方程,由此利用ρ2=x2+y2 , x=ρcosα,y=ρsinα,能求出圓C的極坐標(biāo)方程.(2)由直線l的參數(shù)方程求出直線l的一般方程,再求出圓心到直線距離,由此能求出直線l的斜率.;本題考查圓的極坐標(biāo)方程的求法,考查直線的斜率的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意點(diǎn)到直線公式、圓的性質(zhì)的合理運(yùn)用.
【考點(diǎn)精析】本題主要考查了圓的標(biāo)準(zhǔn)方程的相關(guān)知識(shí)點(diǎn),需要掌握?qǐng)A的標(biāo)準(zhǔn)方程:;圓心為A(a,b),半徑為r的圓的方程才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“雙十一”已經(jīng)成為網(wǎng)民們的網(wǎng)購(gòu)狂歡節(jié),某電子商務(wù)平臺(tái)對(duì)某市的網(wǎng)民在今年“雙十一”的網(wǎng)購(gòu)情況進(jìn)行摸底調(diào)查,用隨機(jī)抽樣的方法抽取了100人,其消費(fèi)金額(百元)的頻率分布直方圖如圖所示:
(1)求網(wǎng)民消費(fèi)金額的平均值和中位數(shù);
(2)把下表中空格里的數(shù)填上,能否有90%的把握認(rèn)為網(wǎng)購(gòu)消費(fèi)與性別有關(guān);
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在R上的偶函數(shù)f(x)滿足f(x+2)=f(x),且在[1,2]上是減函數(shù),若α,β是銳角三角形的兩個(gè)內(nèi)角,則( 。
A. f B. f
C. f D. f
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司即將推車一款新型智能手機(jī),為了更好地對(duì)產(chǎn)品進(jìn)行宣傳,需預(yù)估市民購(gòu)買該款手機(jī)是否與年齡有關(guān),現(xiàn)隨機(jī)抽取了50名市民進(jìn)行購(gòu)買意愿的問(wèn)卷調(diào)查,若得分低于60分,說(shuō)明購(gòu)買意愿弱;若得分不低于60分,說(shuō)明購(gòu)買意愿強(qiáng),調(diào)查結(jié)果用莖葉圖表示如圖所示.
(1)根據(jù)莖葉圖中的數(shù)據(jù)完成列聯(lián)表,并判斷是否有95%的把握認(rèn)為市民是否購(gòu)買該款手機(jī)與年齡有關(guān)?
購(gòu)買意愿強(qiáng) | 購(gòu)買意愿弱 | 合計(jì) | |
20~40歲 | |||
大于40歲 | |||
合計(jì) |
(2)從購(gòu)買意愿弱的市民中按年齡進(jìn)行分層抽樣,共抽取5人,從這5人中隨機(jī)抽取2人進(jìn)行采訪,求這2人都是年齡大于40歲的概率.
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】借助計(jì)算機(jī)(器)作某些分段函數(shù)圖象時(shí),分段函數(shù)的表示有時(shí)可以利用函數(shù),例如要表示分段函數(shù)g(x)=總可以將g(x)表示為g(x)=xh(x-2)+(-x)h(2-x).
(1)設(shè)f(x)=(x2-2x+3)h(x-1)+(1-x2)h(1-x),請(qǐng)把函數(shù)f(x)寫(xiě)成分段函數(shù)的形式;
(2)已知G(x)=[(3a-1)x+4a]h(1-x)+logaxh(x-1)是R上的減函數(shù),求a的取值范圍;
(3)設(shè)F(x)=(x2+x-a+1)h(x-a)+(x2-x+a+1)h(a-x),求函數(shù)F(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線關(guān)于軸對(duì)稱,頂點(diǎn)在坐標(biāo)原點(diǎn),直線經(jīng)過(guò)拋物線的焦點(diǎn).
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過(guò)坐標(biāo)原點(diǎn)的直線與拋物線相交于不同的兩點(diǎn), ,且滿足,證明直線過(guò)軸上一定點(diǎn),并求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從某居民區(qū)隨機(jī)抽取10個(gè)家庭,獲得第i個(gè)家庭的月收入xi(單位:千元)與月儲(chǔ)蓄yi(單位:千元)的數(shù)據(jù)資料,算得=80,=20,=184,=720.
(1)求家庭的月儲(chǔ)蓄y對(duì)月收入x的線性回歸方程=x+;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測(cè)該家庭的月儲(chǔ)蓄.
附:線性回歸方程=x+中,b=,=- ,其中,為樣本平均值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com