設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且對(duì)任意x∈R都有f(x)=f(x+4),當(dāng) x∈(-2,0)時(shí),f(x)=2x,則f(2012)-f(2011)的值為
-
1
2
-
1
2
分析:根據(jù)題意,可得函數(shù)f(x)是周期為4的函數(shù),所以f(2012)=f(0)=0,f(2011)=f(-1)=2-1,從而得出f(2012)-
f(2011)的值.
解答:解:∵對(duì)任意x∈R都有f(x)=f(x+4),
∴函數(shù)f(x)是周期為4的函數(shù)
故f(2012)=f(0),f(2011)=f(-1)
又∵f(x)是定義在R上的奇函數(shù),且當(dāng) x∈(-2,0)時(shí),f(x)=2x
∴f(0)=0,f(-1)=2-1=
1
2

因此f(2012)-f(2011)=0-
1
2
=-
1
2

故答案為:-
1
2
點(diǎn)評(píng):本題給出具有周期的奇函數(shù),求給定的函數(shù)值,著重考查了函數(shù)的奇偶性和周期性等知識(shí)點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(-∞,+∞)上的增函數(shù),如果不等式f(1-ax-x2)<f(2-a)對(duì)于任意x∈[0,1]恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在(0,+∞)上的減函數(shù),并且滿足f(xy)=f(x)+f(y),f(
1
3
)=1

(1)求f(
1
9
)
;
(2)若f(x)+f(2-x)<2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[-1,0)∪(0,1]上的偶函數(shù),當(dāng)x∈[-1,0)時(shí),f(x)=x3-ax(a∈R).
(1)當(dāng)x∈(0,1]時(shí),求f(x)的解析式;
(2)若a>3,試判斷f(x)在(0,1]上的單調(diào)性,并證明你的結(jié)論;
(3)是否存在a,使得當(dāng)x∈(0,1]時(shí),f(x)有最大值1?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在[a,b]上的奇函數(shù),則f(a+b)=
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù).若當(dāng)x≥0時(shí),f(x)=
|1-
1
x
0
x>0;,
x=0.

(1)求f(x)在(-∞,0)上的解析式.
(2)請(qǐng)你作出函數(shù)f(x)的大致圖象.
(3)當(dāng)0<a<b時(shí),若f(a)=f(b),求ab的取值范圍.
(4)若關(guān)于x的方程f2(x)+bf(x)+c=0有7個(gè)不同實(shí)數(shù)解,求b,c滿足的條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案