已知橢圓數(shù)學公式的兩個焦點分別是F1、F2,△MF1F2的重心G恰為橢圓上的點,則點M的軌跡方程為________.

(x≠±9)
分析:設(shè)重心(x1,y1),M(x0,y0) 而F1(2,0),F(xiàn)2(-2,0)由重心坐標公式得,,因為重心在橢圓上,所以,由此可知M的軌跡方程.
解答:設(shè)重心(x1,y1),M(x0,y0) 而F1(2,0),F(xiàn)2(-2,0)由重心坐標公式得
,
∵重心在橢圓上.
,
所以
,
所以M的軌跡方程為:
(x≠±9).
答案:(x≠±9).
點評:本題考查橢圓的性質(zhì)和應用,解題時要認真審題,仔細解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓的兩個焦點分別是F1(0,-2
2
),F2(0,2
2
)
,離心率e=
2
2
3

(1)求橢圓的方程;
(2)一條不與坐標軸平行的直線l與橢圓交于不同的兩點M,N,且線段MN中點的橫坐標為-
1
2
,求直線l的傾斜角的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列各曲線的標準方程.
(1)已知橢圓的兩個焦點分別是(-2,0),(2,0),并且經(jīng)過點(
5
2
,-
3
2
).
(2)已知拋物線焦點在x軸上,焦點到準線的距離為6.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年山東省高考模擬預測卷(四)文科數(shù)學試卷(解析版) 題型:解答題

給定橢圓  ,稱圓心在坐標原點,半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個焦點分別是,橢圓上一動點滿足

(Ⅰ)求橢圓及其“伴隨圓”的方程;

(Ⅱ)過點P作直線,使得直線與橢圓只有一個交點,且截橢圓的“伴隨圓”所得的弦長為.求出的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省汕頭市高三第一次模擬考試數(shù)學理卷 題型:解答題

((本小題滿分14分)

給定橢圓  ,稱圓心在坐標原點,半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個焦點分別是,橢圓上一動點滿足

(Ⅰ)求橢圓及其“伴隨圓”的方程

(Ⅱ)試探究y軸上是否存在點(0, ),使得過點作直線與橢圓只有一個交點,且截橢圓的“伴隨圓”所得的弦長為.若存在,請求出的值;若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省汕頭市高三第一次模擬考試數(shù)學文卷 題型:解答題

(本小題滿分14分)

給定橢圓  ,稱圓心在坐標原點,半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個焦點分別是,橢圓上一動點滿足

(Ⅰ) 求橢圓及其“伴隨圓”的方程;

(Ⅱ) 過點P作直線,使得直線與橢圓只有一個交點,且截橢圓的“伴隨圓”所得的弦長為.求出的值.

 

查看答案和解析>>

同步練習冊答案