【題目】已知是橢圓的兩個(gè)焦點(diǎn),且點(diǎn)在橢圓C上.

1)求橢圓C的方程;

2)直線(xiàn)(m>0)與橢圓C有且僅有一個(gè)公共點(diǎn),且與x軸和y軸分別交于點(diǎn)M,N,當(dāng)△OMN面積取最小值時(shí),求此時(shí)直線(xiàn)的方程.

【答案】(1)(2)

【解析】

(1)是橢圓的兩個(gè)焦點(diǎn),且點(diǎn)在橢圓C上,求出a,b,即可得出橢圓方程;

(2)聯(lián)立直線(xiàn)和橢圓方程可得,由此利用根的判別式、韋達(dá)定理、弦長(zhǎng)公式、基本不等式、橢圓性質(zhì),結(jié)合已知條件即可求出結(jié)果.

(1)∵是橢圓的兩個(gè)焦點(diǎn),且點(diǎn)在橢圓C上,∴依題意,,又,故.由b2=3.

故所求橢圓C的方程為

(2)由,消y,

由直線(xiàn)l與橢圓C僅有一個(gè)公共點(diǎn)知,

,整理得

由條件可得,,

所以.①

代入①,得

因?yàn)?/span>,所以,

當(dāng)且僅當(dāng),則,即時(shí)等號(hào)成立,有最小值

因?yàn)?/span>,所以,又,解得

故所求直線(xiàn)方程為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱(chēng)為函數(shù)的局部對(duì)稱(chēng)點(diǎn).

1)證明:函數(shù)在區(qū)間內(nèi)必有局部對(duì)稱(chēng)點(diǎn);

2)若函數(shù)R上有局部對(duì)稱(chēng)點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè):實(shí)數(shù)滿(mǎn)足,:實(shí)數(shù)滿(mǎn)足.

(1)若,且為真,求實(shí)數(shù)的取值范圍;

(2)若,且的充分不必要條件,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P-ABCD中,底面為菱形,且,

)求證:

)若,求二面角的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中, , 兩兩垂直, ,且, .

(1)求二面角的余弦值;

(2)已知點(diǎn)為線(xiàn)段上異于的點(diǎn),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】20171018日至1024日,中國(guó)共產(chǎn)黨第十九次全國(guó)代表大會(huì)簡(jiǎn)稱(chēng)黨的“十九大”在北京召開(kāi)一段時(shí)間后,某單位就“十九大”精神的領(lǐng)會(huì)程度隨機(jī)抽取100名員工進(jìn)行問(wèn)卷調(diào)查,調(diào)查問(wèn)卷共有20個(gè)問(wèn)題,每個(gè)問(wèn)題5分,調(diào)查結(jié)束后,發(fā)現(xiàn)這100名員工的成績(jī)都在內(nèi),按成績(jī)分成5組:第1,第2,第3,第4,第5,繪制成如圖所示的頻率分布直方圖,已知甲、乙、丙分別在第3,4,5組,現(xiàn)在用分層抽樣的方法在第3,4,5組共選取6人對(duì)“十九大”精神作深入學(xué)習(xí).

求這100人的平均得分同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表;

求第3,4,5組分別選取的作深入學(xué)習(xí)的人數(shù);

若甲、乙、丙都被選取對(duì)“十九大”精神作深入學(xué)習(xí),之后要從這6人隨機(jī)選取2人再全面考查他們對(duì)“十九大”精神的領(lǐng)會(huì)程度,求甲、乙、丙這3人至多有一人被選取的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)x2=4y

(1)求拋物線(xiàn)在點(diǎn)P(2,1)處的切線(xiàn)方程;

(2)若不過(guò)原點(diǎn)的直線(xiàn)l與拋物線(xiàn)交于AB兩點(diǎn)(如圖所示),且OAOB,|OA|=|OB|,求直線(xiàn)l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,平面,,的中點(diǎn),是線(xiàn)段上的一動(dòng)點(diǎn).

(1)當(dāng)是線(xiàn)段的中點(diǎn)時(shí),證明:平面

(2)當(dāng)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】4月16日摩拜單車(chē)進(jìn)駐大連市旅順口區(qū),綠色出行引領(lǐng)時(shí)尚,旅順口區(qū)對(duì)市民進(jìn)行“經(jīng)常使用共享單車(chē)與年齡關(guān)系”的調(diào)查統(tǒng)計(jì),若將單車(chē)用戶(hù)按照年齡分為“年輕人”(20歲~39歲)和“非年輕人”(19歲及以下或者40歲及以上)兩類(lèi),抽取一個(gè)容量為200的樣本,將一周內(nèi)使用的次數(shù)為6次或6次以上的稱(chēng)為“經(jīng)常使用單車(chē)用戶(hù)”。使用次數(shù)為5次或不足5次的稱(chēng)為“不常使用單車(chē)用戶(hù)”,已知“經(jīng)常使用單車(chē)用戶(hù)”有120人,其中是“年輕人”,已知“不常使用單車(chē)用戶(hù)”中有是“年輕人”.

(1)請(qǐng)你根據(jù)已知的數(shù)據(jù),填寫(xiě)下列列聯(lián)表:

年輕人

非年輕人

合計(jì)

經(jīng)常使用單車(chē)用戶(hù)

不常使用單車(chē)用戶(hù)

合計(jì)

(2)請(qǐng)根據(jù)(1)中的列聯(lián)表,計(jì)算值并判斷能否有的把握認(rèn)為經(jīng)常使用共享單車(chē)與年齡有關(guān)?

(附:

當(dāng)時(shí),有的把握說(shuō)事件有關(guān);當(dāng)時(shí),有的把握說(shuō)事件有關(guān);當(dāng)時(shí),認(rèn)為事件是無(wú)關(guān)的)

查看答案和解析>>

同步練習(xí)冊(cè)答案