已知平面,直線,直線,有下面四個命題:

(1)     (2)

(3)     (4)

 其中正確的是(   )

A.(1)與(2)         B.(3)與(4)         C.(1)與(3)           D.(2)與(4)

 

【答案】

C

【解析】

試題分析:解:對于①l⊥α,α∥β,m?β?l⊥m正確;對于②l⊥α,m?β,α⊥β?l∥m;l與m也可能相交或者異面;對于③l∥m,l⊥α?m⊥α,又因為m?β則α⊥β正確;對于④l⊥m,l⊥α則m可能在平面α內(nèi),也可能不在平面α內(nèi),所以不能得出α∥β;綜上所述①③正確,故選C

考點:平面與平面之間的位置關系

點評:本題考查平面與平面之間的位置關系,考查空間想像能力及組織材料判斷面面間位置關系的能力,屬于基本題型.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列四個命題
①過平面外一定點有且只有一個平面與已知平面垂直;
②過空間一定點有且只有一條直線與已知平面垂直;
③過平面外一定直線有且只有一個平面與已知平面垂直;
④垂直于同一平面的兩個平面可能互相平行,也可能相交;
⑤垂直于同一條直線的兩個平面平行;
⑥平行于同一個平面的兩直線不是平行就是相交.
其中正確命題的序號為
②④⑤
②④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題中:
①已知三條直線a、b、c,其中a,b異面,a∥c,則b,c異面;
②若直線a與b異面,直線b與c異面,則直線a與c異面;
③過平面外一點與平面內(nèi)一點的直線,和平面內(nèi)不經(jīng)過該點的直線是異面直線;
④不同在任何一個平面內(nèi)的兩條直線叫做異面直線.
其中正確的命題為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面α⊥平面β,直線a∥α,直線a垂直于α與β的交線AB,試判斷a與β的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年湖南長沙重點中學高三上學期第四次月考文科數(shù)學試卷(解析版) 題型:選擇題

已知下列四個命題,其中真命題的序號是(    )

① 若一條直線垂直于一個平面內(nèi)無數(shù)條直線,則這條直線與這個平面垂直;

② 若一條直線平行于一個平面,則垂直于這條直線的直線必垂直于這個平面;

③ 若一條直線平行一個平面,另一條直線垂直這個平面,則這兩條直線垂直;

④ 若兩條直線垂直,則過其中一條直線有唯一一個平面與另外一條直線垂直;

A.①②        B.②③         C.②④         D.③④

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆山東省濟寧市高二10月月考理科數(shù)學試卷(解析版) 題型:填空題

下列命題中,真命題是            (將真命題前面的編號填寫在橫線上).

①已知平面、和直線,若,則

②已知平面、和兩異面直線、,若,,,則

③已知平面、、和直線,若,則

④已知平面、和直線,若,則

 

查看答案和解析>>

同步練習冊答案