(2013•順義區(qū)一模)設(shè)函數(shù)f(x)=
13
x3
-ax(a>0),g(x)=bx2+2b-1.
(Ⅰ)若曲線y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,求a,b的值;
(Ⅱ)當(dāng)a=1-2b時(shí),若函數(shù)f(x)+g(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(Ⅲ)當(dāng)a=1-2b=1時(shí),求函數(shù)f(x)+g(x)在區(qū)間[t,t+3]上的最大值.
分析:(I)求出f'(x),g'(x),由題意得f(1)=g(1),且f'(1)=g'(1),解該方程組即可;
(II)記h(x)=f(x)+g(x),當(dāng)a=1-2b時(shí),h(x)=
1
3
x3+
1-a
2
x2-ax-a
,利用導(dǎo)數(shù)可研究其單調(diào)性、極值情況,由函數(shù)在(-2,0)內(nèi)有兩零點(diǎn)可得端點(diǎn)處函數(shù)值及極值符號(hào),由此得一不等式組,解出即可;
(III)當(dāng)a=1-2b=1時(shí),h(x)=
1
3
x3-x-1
.由(II)可知,函數(shù)h(x)的單調(diào)區(qū)間及極值點(diǎn),按照在區(qū)間[t,t+3]內(nèi)沒有極值點(diǎn),一個(gè)極值點(diǎn),兩個(gè)極值點(diǎn)分類討論,結(jié)合圖象及函數(shù)的單調(diào)性即可求得其最大值;
解答:解:(I)f'(x)=x2-a,g'(x)=2bx.
因?yàn)榍y=f(x)與曲線y=g(x)在它們的交點(diǎn)(1,c)處具有公共切線,
所以f(1)=g(1),且f'(1)=g'(1),即
1
3
-a=b+2b-1
,且1-a=2b,
解得a=
1
3
,b=
1
3

(II)記h(x)=f(x)+g(x),
當(dāng)a=1-2b時(shí),h(x)=
1
3
x3+
1-a
2
x2-ax-a
,h'(x)=x2+(1-a)x-a=(x+1)(x-a),
令h'(x)=0,得x1=-1,x2=a>0.
當(dāng)x變化時(shí),h'(x),h(x)的變化情況如下表:
x (-∞,-1) -1 (-1,a) a (a,+∞)
h'(x) + 0 - 0 +
h(x) 極大值 極小值
所以函數(shù)h(x)的單調(diào)遞增區(qū)間為(-∞,-1),(a,+∞);單調(diào)遞減區(qū)間為(-1,a),
故h(x)在區(qū)間(-2,-1)內(nèi)單調(diào)遞增,在區(qū)間(-1,0)內(nèi)單調(diào)遞減,
從而函數(shù)h(x)在區(qū)間(-2,0)內(nèi)恰有兩個(gè)零點(diǎn),當(dāng)且僅當(dāng)
h(-2)<0
h(-1)>0
h(0)<0
,解得0<a<
1
3

所以a的取值范圍是(0,
1
3
)

(III)記h(x)=f(x)+g(x),當(dāng)a=1-2b=1時(shí),h(x)=
1
3
x3-x-1

由(II)可知,函數(shù)h(x)的單調(diào)遞增區(qū)間為(-∞,-1),(1,+∞);單調(diào)遞減區(qū)間為(-1,1).
①當(dāng)t+3<-1時(shí),即t<-4時(shí),h(x)在區(qū)間[t,t+3]上單調(diào)遞增,
所以h(x)在區(qū)間[t,t+3]上的最大值為h(t+3)=
1
3
(t+3)3-(t+3)-1=
1
3
t3+3t2+8t+5

②當(dāng)t<-1且-1≤t+3<1,即-4≤t<-2時(shí),h(x)在區(qū)間[t,-1)上單調(diào)遞增,在區(qū)間[-1,t+3]上單調(diào)遞減,
所以h(x)在區(qū)間[t,t+3]上的最大值為h(-1)=-
1
3

當(dāng)t<-1且t+3≥1,即-2≤t<-1時(shí),t+3<2且h(2)=h(-1)=-
1
3
,
所以h(x)在區(qū)間[t,t+3]上的最大值為h(-1)=-
1
3
;
③當(dāng)-1≤t<1時(shí),t+3≥2>1,h(x)在區(qū)間[t,1)上單調(diào)遞減,在區(qū)間[1,t+3]上單調(diào)遞增,
而最大值為h(t)與h(t+3)中的較大者.
由h(t+3)-h(t)=3(t+1)(t+2)知,當(dāng)-1≤t<1時(shí),h(t+3)≥h(t),
所以h(x)在區(qū)間[t,t+3]上的最大值為h(t+3)=
1
3
t3+3t2+8t+5
;
④當(dāng)t≥1時(shí),h(x)在區(qū)間[t,t+3]上單調(diào)遞增,
所以h(x)在區(qū)間[t,t+3]上的最大值為h(t+3)=
1
3
t3+3t2+8t+5
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程、函數(shù)的零點(diǎn)及函數(shù)在閉區(qū)間上的最值問題,考查分類討論思想、數(shù)形結(jié)合思想,考查學(xué)生綜合運(yùn)用知識(shí)分析解決問題的能力,綜合性強(qiáng),難度大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)一模)在復(fù)平面內(nèi),復(fù)數(shù)
1-2i
2+i
對(duì)應(yīng)的點(diǎn)的坐標(biāo)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)一模)已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若f(x)≤|f(
π
6
)|對(duì)x∈R恒成立,且f(
π
2
)<f(π).則下列結(jié)論正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)一模)函數(shù)B1的定義域?yàn)锳,若x1,x2∈A且f(x1)=f(x2)時(shí)總有x1=x2,則稱f(x)為單函數(shù).例如,函數(shù)f(x)=x+1(x∈R)是單函數(shù).下列命題:
①函數(shù)f(x)=x2-2x(x∈R)是單函數(shù);
②函數(shù)f(x)=
log2x, x≥2
2-x,  x<2
是單函數(shù);
③若y=f(x)為單函數(shù),x1,x2∈A且x1≠x2,則f(x1)≠f(x2);
④函數(shù)f(x)在定義域內(nèi)某個(gè)區(qū)間D上具有單調(diào)性,則f(x)一定是單函數(shù).
其中的真命題是
(寫出所有真命題的編號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)一模)參數(shù)方程
x=2-t
y=-1-2t
(為參數(shù))與極坐標(biāo)方程ρ=sinθ所表示的圖形分別是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•順義區(qū)一模)在△ABC中,若b=4,cosB=-
1
4
,sinA=
15
8
,則a=
2
2
,c=
3
3

查看答案和解析>>

同步練習(xí)冊(cè)答案