【題目】食品安全問題越來越引起人們的重視,農(nóng)藥、化肥的濫用給人民群眾的健康帶來了一定的危害.為了給消費(fèi)者帶來放心的蔬菜,某農(nóng)村合作社每年投入資金萬元,搭建甲、乙兩個無公害蔬菜大棚,每個大棚至少要投入資金萬元,其中甲大棚種西紅柿,乙大棚種黃瓜.根據(jù)以往的種菜經(jīng)驗(yàn),發(fā)現(xiàn)種西紅柿的年收入、種黃瓜的年收入與各自的資金投入(單位:萬元)滿足,.設(shè)甲大棚的資金投入為(單位:萬元),每年兩個大棚的總收入為(單位:萬元).

1)求的值;

2)試問如何安排甲、乙兩個大棚的資金投入,才能使總收入最大.

【答案】1;(2)當(dāng)甲大棚投入資金為128萬元,乙大棚投入資金為72萬元時,總收益最大.

【解析】

1)根據(jù)題意,可分別求得甲、乙兩個大棚的資金投入值,代入解析式即可求得總收益.

2)表示出總收益的表達(dá)式,并求得自變量取值范圍,利用換元法轉(zhuǎn)化為二次函數(shù)形式,即可確定最大值.

1)當(dāng)甲大棚的資金投入為50萬元時,乙大棚資金投入為150萬元,

則由足

可得總收益為萬元;

2)根據(jù)題意,可知總收益為

滿足,解得,

,

所以

,

因?yàn)?/span>,

所以當(dāng)時總收益最大,最大收益為萬元,

所以當(dāng)甲大棚投入資金為128萬元,乙大棚投入資金為72萬元時,總收益最大,最大收益為282萬元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某生物興趣小組對冬季晝夜溫差與反季節(jié)新品種大豆發(fā)芽數(shù)之間的關(guān)系進(jìn)行研究,他們分別記錄了日至日每天的晝夜溫差與實(shí)驗(yàn)室每天顆種子的發(fā)芽數(shù),得到以下表格

該興趣小組確定的研究方案是:先從這組數(shù)據(jù)中選取組數(shù)據(jù),然后用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).

(1) 求統(tǒng)計數(shù)據(jù)中發(fā)芽數(shù)的平均數(shù)與方差;

(2) 若選取的是日與日的兩組數(shù)據(jù),請根據(jù)日至日的數(shù)據(jù),求出發(fā)芽數(shù)關(guān)于溫差的線性回歸方程,若由線性回歸方程得到的估計數(shù)據(jù)與所選取的檢驗(yàn)數(shù)據(jù)的誤差不超過,則認(rèn)為得到的線性回歸方程是可靠的,問得到的線性回歸方程是否可靠? 附:線性回歸方程中斜率和截距最小二乘估法計算公式:

,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求的單調(diào)區(qū)間;

(2)若,求證:函數(shù)只有一個零點(diǎn),且.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市戶居民的月平均用電量(單位:度),以,,,,,,分組的頻率分布直方圖如圖.

1)求直方圖中的值;

2)求月平均用電量的眾數(shù)和中位數(shù);

3)在月平均用電量為,,的四組用戶中,用分層抽樣的方法抽取戶居民,則月平均用電量在的用戶中應(yīng)抽取多少戶?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的離心率為,且點(diǎn)在橢圓上,設(shè)與平行的直線與橢圓相交于, 兩點(diǎn),直線, 分別與軸正半軸交于, 兩點(diǎn).

(I)求橢圓的標(biāo)準(zhǔn)方程;

()判斷的值是否為定值,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)Sn為數(shù)列{an}的前n項(xiàng)和.已知

(Ⅰ)求{an}的通項(xiàng)公式;

(Ⅱ)令,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,圓

(Ⅰ)若圓C與x軸相切,求圓C的方程;

(Ⅱ)已知,圓與x軸相交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).過點(diǎn)任作一條直線與圓相交于兩點(diǎn)A,B.問:是否存在實(shí)數(shù)a,使得=?若存在,求出實(shí)數(shù)a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】搶“微信紅包”已經(jīng)成為中國百姓歡度春節(jié)時非常喜愛的一項(xiàng)活動.小明收集班內(nèi)20名同學(xué)今年春節(jié)期間搶到紅包金額(元)如下(四舍五入取整數(shù)):

102 52 41 121 72

162 50 22 158 46

43 136 95 192 59

99 22 68 98 79

對這20個數(shù)據(jù)進(jìn)行分組,各組的頻數(shù)如下:

組別

紅包金額分組

頻數(shù)

2

9

3

)寫出的值,并回答這20名同學(xué)搶到的紅包金額的中位數(shù)落在哪個組別;

)記組紅包金額的平均數(shù)與方差分別為組紅包金額的平均數(shù)與方差分別為,試分別比較、的大;(只需寫出結(jié)論)

)從兩組的所有數(shù)據(jù)中任取2個數(shù)據(jù),記這2個數(shù)據(jù)差的絕對值為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油

D. 某城市機(jī)動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

同步練習(xí)冊答案